帳號:guest(3.12.165.82)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭儒璟
作者(外文):Cheng, Ju-Ching
論文名稱(中文):應用於100GHz高速無線傳輸之高功率發射機
論文名稱(外文):A 100 GHz High Power Transmitter for Gb/s communication
指導教授(中文):劉怡君
指導教授(外文):Liu, Yi-Chun
口試委員(中文):郭建男
徐碩鴻
口試委員(外文):Kuo, Chien-Nan
Hsu, Shuo-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063527
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:65
中文關鍵詞:功率放大器發射機
外文關鍵詞:power amplifiertransmittercross-coupled pairNeutralizedCMOS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:374
  • 評分評分:*****
  • 下載下載:40
  • 收藏收藏:0
為了提供人類方便與安全的生活環境,高速傳輸系統是被急切需要的。高速傳輸通訊可以被應用在汽車防撞雷達、生醫影像應用或者機場安檢。為了實現高速傳輸系統,我們會大致會朝兩個方向前進,其一是增進通訊的頻寬,使每次傳輸的資料量變多,或者操作在更高的頻率而操作在較高的頻段相對容易達成大頻寬,當通訊系統操作在更高的頻率時,每秒可提供更多的資料傳輸。而此次研究著重在操作於更高的頻率,選用W-band的頻段(75~110GHz)來達到這個目標,選用W-band的好處是此頻段並沒有被大量地使用,此頻段都可以被任意使用,且W-band的波長也較低頻短,這個特性可被應用在短距離精確的傳輸應用上,例如:機場的安檢,因為考慮到人權問題,所以希望在短時間內便能偵測是否有攜帶違禁品。
此研究設計W-band的發射機,此發射機是由Gilbert cell架構的混頻器與class AB功率放大器組成,而此研究著重在後端的功率放大器設計,因為功率放大器的特性將會決定發射機的功率消耗、線性度和輸出功率大小。此研究將設計三個不同的功率放大器並討論之。首先是共源極的差動放大器,此架構有抑制雜訊跟共模干擾的優點,且因為是由兩路合成的差動放大器,相較於一般的單端放大器,將提供更大的輸出功率。此功率放大器的佈局後模擬有12.35 dB的飽和輸出功率與8.25 dB的功率增益,也有相當高的輸出功率1-dB功率壓縮點(P_1dB)為9.11 dBm和功率附加效率為7.26%,此設計使用了0.18 × 0.55 〖mm〗^2的面積。為了增進第一個功率放大器每一級的平均功率增益,在第二個功率放大器的級與級之間加上cross-coupled pair的技術使功率增益上升。Ccross-coupled pair的技術是提供電路一個負阻,消除在transformer中多餘的電阻值,使電路匹配更接近理想。此功率放大器的佈局後模擬提供12.6 dB的飽和輸出功率與8.5 dB的功率增益,輸出功率1-dB功率壓縮點(P_1dB)為9.2 dBm和功率附加效率為7.4%,此設計使用了0.18 × 0.58 〖mm〗^2的面積。第三個功率放大器在輸出級加上cross-coupled 的電容使f_max上升,產生更大的輸出功率,而在輸出級的開關將會改變輸出的阻抗,以增進不同頻率的輸出匹配。此功率放大器的佈局後模擬提供13.9 dB的飽和輸出功率與10 dB的功率增益,輸出功率1-dB功率壓縮點(P_1dB)為9.9 dBm和功率附加效率為6.3%,此設計使用了0.13 × 0.505 〖mm〗^2的面積。最後將介紹W-band的發射機,此發射機的混頻器與功率放大器將會被分開討論,transformer在此次研究被大量使用,因為可以被用來匹配電路、合併功率或者饋入電壓。此發射機提供11.3 dB的飽和輸出功率及237 mW的功率消耗,而最大的轉換增益則有14.8 dB和13.3 GHz的頻寬,此設計主要的面積只有0.2 × 0.52 〖mm〗^2。
To provide a more comfortable and secure environment, the high data rate communication systems has been needed hungrilyare with high demands. The common applications of the high data rate communication could be usedare the in Gb/s wireless data transmission, real-time video streaming, automotive anti-collision radars, and medical image sensor, and etc. There have are two ways to touch achieve the goal of the high-speed communication could be implement by ,. iImproving the operation communication bandwidth or . It would be easier to get larger bandwidth when operating at a high er frequency could improve the data rate.. The higher frequency could send larger data per second. (re-write this part. High frequency does not necessary provide high data rate. High bandwidth is the key point.) Therefore, a W-band transmitter is implemented to realize the Gb/s communication. We choose the second one in this thesis. The advantage of W-band (75~110 GHz) is that there is so far no officially defined standard to be used and the wavelength is short enough to have some characteristics which could be used on security or medical treatment. The cell would have different behavior under this frequency.(what characteristics?)
A W-band transmitter is presented in this thesis. This transmitter is composed with a Gilbert cell upconversion mixer and a differential power amplifier (PA). This work focuses on the design of the power amplifier (PA) since it dominates the power consumption, the power efficiency, the linearity, and the output power of the transmitter. Three distinct power amplifiers are discussed in details in this thesis. In the beginning, aA differential common-source power amplifier has firstly been design. This structure suppresses the noise and common-mode interferences. It also provides a larger output power compared with its single-ended counterpart. The saturation output power (P_sat) is 12.35 dBm with a power gain of 8.25 dB of power gain in the post-layout simulation. It achieves a high output 1-dB compression point (P_1dB) of 9.11 dBm, and a power-added-efficieny (PAE) of 7.26%, with a chip size of 0.18 × 0.55 〖mm〗^2. To improve the gain budget of the first power amplifier, the second power amplifier has been designed with higher drivability. By adding a cross-coupled pair at the inter-stage of the PA, power gain is increased. The inserted cCross-coupled pair technology could provides circuit negative resistance , which could offsetcompensates the extra extra resistance in from transformer. Therefore, the gain of the PA is largely improved. This PA achieves a post-layout simulated P_sat of 12.6 dBm, a P_1dB of 9.2 dBm, a PAE of 7.4%, and a linear power gain of 8.5 dB, with a chip size of 0.18 × 0.58 〖mm〗^2. In the third PA design, cross-coupled capacitors at the power stage are inserted to enhance the f_max of the transistors and hence the output power. Switches at the output port are designed to change the output impedance to improve the saturation output power at each operating frequency. This PA achieves a post-layout simulated P_sat of 13.9 dBm, a P_1dB of 9.9 dBm, a PAE of 6.3%, and a linear gain of 10 dB, with a chip size of 0.13 × 0.505 〖mm〗^2. Lastly, a CMOS W-band transmitter is designed and implemented. The PA and the mixer in the transmitter will be discussed individually. Transformers are used extensively in the power amplifier and the mixer to facilitate compact power combining, impedance matching networks, and DC feeds. The transmitter provides a saturation output power of 11.3 dBm with a power consumption of 237 mW. The peak conversion gain is 14.8 dB and the 3-dB bandwidth is 13.3 GHz. The core circuit occupies an area of 0.2 mm x 0.52 mm〖mm〗^2.
ACKNOWLEDGEMENT I
ABSTRACT II
摘要 IV
CONTENTS VI
LIST OF FIGURES VIII
LIST OF TABLES X
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 THESIS ORGANIZATION 2
CHAPTER 2 DESIGN A W-BAND HIGH SATURATION OUTPUT POWER PA IN 90NM CMOS ………………………………………………………………………………3
2.1 INTRODUCTION 3
2.2 LITERATURE REVIEW 5
2.3 DESIGN HIGH SATURATION OUTPUT POWER POWER AMPLIFIER 6
2.3.1 LOAD PULL 7
2.3.2 TRANSFORMER DESIGN 8
2.4 PROPOSED CIRCUITRY 12
2.5 SIMULATION RESULTS 14
CHAPTER 3 DESIGN A W-BAND HIGH OUTPUT POWER WITH CROSS-COUPLED PAIR PA IN 90NM CMOS 20
3.1 INTRODUCTION 20
3.2 LITERATURE REVIEW 22
3.3 DESIGN HIGH OUTPUT POWER WITH CROSS-COUPLED PAIR PA 23
3.4 PROPOSED CIRCUITRY 26
3.5 SIMULATION RESULTS 28
CHAPTER 4 DESIGN A W-BAND HIGH OUTPUT POWER PA WITH TUNABLE IMPEDANCE IN 90NM CMOS 33
4.1 INTRODUCTION 33
4.2 LITERATURE REVIEW 35
4.3 DESIGN HIGH OUTPUT POWER WITH TUNABLE IMPEDANCE PA 36
4.3.1 CROSS-COUPLED TECHNOLOGY 36
4.3.2 TUNABLE IMPEDANCE 38
4.4 PROPOSED CIRCUITRY 40
4.5 SIMULATION AND MEASUREMENT RESULTS 42
CHAPTER 5 DESIGN A W-BAND HIGH OUTPUT POWER TRANSMITTER IN 90NM CMOS 47
5.1 INTRODUCTION 47
5.2 LITERATURE REVIEW 49
5.3 DESIGN HIGH OUTPUT POWER TRANSMITTER 50
5.3.1 GILBERT CELL MIXER 50
5.3.2 HIGH SATURATION OUTPUT POWER PA 52
5.4 PROPOSED CIRCUITRY 53
5.5 SIMULATION RESULTS 55
CHAPTER 6 CONCLUSION AND FUTURE WORKS 59
REFERENCES 61
A. Balteanu et al, “A 2×44Gb/s 110-GHz wireless transmitter with direct amplitude and phase modulation in 45-nm SOI CMOS,” Compound Semiconductor Integrated Circuit Symposium, Oct. 2013, pp. 1-4.
J. Kang, D. Yu, Y. Yang, and B. Kim, “Highly linear 0.18-μmCMOS power amplifier with deep-n-well structure,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1073-1080, May 2006.
IEEE Journal of Solid State Circuits, vol. 41, no. 5, May 2006.
J. Su, H. Hsu, S. Wong, C. Chang, T. Huang, and J. Y. Sun, “Improving the RF performance of 0.18μm CMOS with deep n-well implantation,” IEEE Electron Device Lett., vol. 22, no. 10, pp. 481–483, Oct. 2001.
C. Kim, et al., “A 77GHz CMOS array receiver, transmitter and antenna for low cost small size automotive radar,” in Proc. Asia-Pacific Microwave Conf. (APMC), Nov. 2013, pp. 149-151.in Asia-Pacific Microwave Conference, Nov. 2013, pp. 149-151.
T. Mitomo, N. Ono, Y. Yoshiara, O. Watanabe, and I. Seto,“A 77 GHz 90 nm CMOS Transceiver for FMCW Radar Applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928–937, Apr. 2010
IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928–937, Apr. 2010
I. Gresham, et al., “Ultra-wideband Radar Sensors for Short-range Vehicular Applications,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 9, pp. 2105–2122, Sep. 2004. IEEE Trans. Microw. Theory Tech., vol. 52, no. 9, pp. 2105–2122, Sep. 2004.
M. Behet, “Low Cost MMICS for Automotive Radar and Passive Radiometric Imaging Applications,” MM-Wave Products and Technologies, 2006. The Institution of Engineering and Technology Seminar on, pp. 58–62, Nov. 2006.
Y. Terry Yao, Q. G. Michael Q. Gordon , K. W. T. Keith K. W. Tang, H. K. Y. Kenneth H. K. Yau,Y. Ming-Ta Yang,Peter Schvan. Peter, and P. Voinigescu Sorin P. Voinigescu “Algorithmic Design design of CMOS LNAs and PAs for 60-GHz Radioradio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May 2007. (論文名稱除了第一字以外, 其他小寫)
John J. R. Long, “Monolithic Transformer transformer for sSilicon RFIC dDesign,” IEEE J. Solid-State Circuits, vol. 35, no. 9 , pp. 1368–1382, Sep. 2000.
Andrew A. Brown, Ken K. Brown, James J. Chen, K.C. Hwang, Nick N. Kolias, and Rick R. Scott, “W-Band GaN Power Amplifier MMICs,” Microwave Symposium Digest (MTT), pp. 1–4, Jun.e 2011.
A. Hajimiri A. , and T.H. Lee T.H. , “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5 , pp. 717–724, May 1999.
A. Tessmann A. , Haydl W.H. Haydl , Neumann M., and Rudiger, J, “W-band cascode amplifier modules for passive imaging applications,” IEEE Microwave and Guided Wave Letters, vol. 20, no. 5, pp. 189–191, May 2000. (作者名字寫法要統一, 全部縮寫, 或全名. 一般first name縮寫, last name全名.)
KuenK.-Jou J. Tsai, JingJ.-Lin L. Kuo, and Huei H. Wang, “A W-band Power Amplifier in 65-nm CMOS with 27GHz Bandwidth and 14.8dBm Saturated Output Power,” in Proc. IEEE Radio Frequency Integrated Circuit Symp. (RFIC), Jun. 2012, pp. 69-72.Radio Frequency Integrated Circuits Symposium, pp. 1–4, Jun.e 2011.
Zhiwei Z. Xu,Qun Q. Jane J. Gu, and MauM.-Chung C. Frank Chang, “A W-band Current Combined Power Amplifier with 14.8dBm Psat and 9.4% Maximum PAE in 65nm CMOS,” in Proc. IEEE Radio Frequency Integrated Circuit Symp. (RFIC), Jun. 2011, pp. 1-4.
Y.-S. Jiang, J.-H. Tsai, and H. Wang, “A W-Band Medium Power Amplifier in 90nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 818-820, Dec. 2008.Radio Frequency Integrated Circuits Symposium, pp. 1–4, Jun.e 2011.
Yu-Sian Jiang, Jeng-Han Tsai, and Huei Wang, “A W-Band Medium Power Amplifier in 90nm CMOS,” IEEE, Micowave and Wireless Components Letters, vol. 18, no. 12, pp. 818–820, Dec. 2008.
Hiroki H. Asada, Kota K. Matsushita, Keigo K. Bunsen, Kenichi K. Okada, and Akira A. Matsuzawa, “A 60GHz CMOS power amplifier using capacitive cross-coupling neutralization with 16 % PAE,” Micowave Integrated Circuits Conference (EuMIC), pp. 554–557, Oct. 2011.
Siva S. V Thyagaraian, Ali A. M Niknejad, and Christopher C. D Hull , “A 60 GHz Linear Wideband Power Amplifier using Cascode Neutralization in 28 nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2013, pp. 1-4.Custom Integrated Circuits Conference (CICC), pp. 1–4, Sept. 2013.
Dixian D. Zhao., and Patrick P. Reynaert, “A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 10 , pp. 2323–2337, Oct. 2013.
Yu-Sian JiangY.-S. Jiang , Zuo-Min TsaiZ.-M. Tsai , Jeng-Han TsaiJ.-H. Tsai , Hsien-Te ChenH.-T. Chen, and Huei WangH. Wang, “A 86 to 108 GHz Amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 124-126, Dec. 2008.IEEE, Micowave and Wireless Components Letters, vol. 18, no. 2, pp. 124–126, Feb. 2008.
Ashok A. Verma, Kenneth K. K.O, and Jenshan J. Lin, “A Low-Power Up-Conversion CMOS Mixer for 22-29GHz Ultra-Wideband Applications,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 8, pp.3295-3300, Aug. 2006. IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3295–3300, Aug. 2006.
YoY.-Sheng S. Lin, WeiW.-Chen C. Wen, and ChienC.-Chin C. Wang, “13.6 mW 79 GHz CMOS Up-Conversion Mixer With 2.1 dB Gain and 35.9 dB LO-RF Isolation,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 126-128, Feb. 2014.
IEEE, Micowave and Wireless Components Letters, vol. 24, no. 2, pp. 126–128, Feb. 2014.
ShihS.-Jou J. Huang, YuY.-Ching C. Yeh, Huaide H. Wang, PangP.-Ning N. Chen, and Jri J. Lee, “W- Band BPSK and QPSK Transceivers With Costas-Loop Carrier Recovery in 65-nm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 46, no. 12 , pp. 3033–3046, Dec. 2011.
Wei. L. Chan and John J. R. Long, “A 60-GHz Band 2X2 Phased –Array Transmitter in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 12 , pp. 2682–2695, Dec. 2010.
Zhiwei Z. Xu,Qun Q. Jane J. Gu , and MauM.-Chung C. Frank Chang, ”A 100–117 GHz W-Band CMOS Power Amplifier With On-Chip Adaptive Biasing” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 547-549, Oct. 2011.IEEE, Micowave and Wireless Components Letters, volVOL. 21, noNO. 10, OCTOBER Oct. 2011.
T. Suzuki, Y. Kawano, M. Sato, T. Hirose, and K. Joshin, “60 and 77GHz Power Amplifiers in Standard 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig., Feb. 2008, pp. 562-563IEEE ISSCC Dig., pp. 562-563, Feb. 2008.
YN. Kurita and H. Kondoh, “60 GHz and 80 GHz wide band power amplifier MMICs in 90 nm CMOS technology,” in Proc. IEEE Radio Frequency Integrated Circuit Symp. (RFIC), Jun. 2009, pp. 39-42. in IEEE Radio FrequencyIntegrated Circuits (RFIC) Symp. Dig., Jun. 2009, pp. 39–42.
J.-J. Lin, K.-H. To, D. Hammock, B. Knappenberger, M. Majerus and W. Huang, "Power Amplifier for 77-GHz Automotive Radar in 90-nm LP CMOS Technology," IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 292-294, May 2010.Microwave and Wireless Components Letters, IEEE , vol.20, no.5, pp. 292-294, May 2010
C. Kim, et al., “A 77GHz CMOS array receiver, transmitter and antenna for low cost small size automotive radar,” in Proc. Asia-Pacific Microwave Conf. (APMC), Nov. 2013, pp. 149-151.
Asia-Pacific Microwave Conference, Nov. 2013, pp. 149-151.
D. Sandstrom et al, “A W-band 65nm CMOS transmitter front-end with 8GHz IF bandwidth and 20dB IR-ratio,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig., Feb. 2010, pp. 418-419ISSCC Dig. Tech. Papers, Feb. 2010, pp. 418-419.
S.-J. Huang et al, “W-band BPSK and QPSK transceivers with Costas-Loop carrier recovery in 65-nm CMOS technology,” IEEE J.ournal of Solid-State Circuits, vol. 46, no. 12, pp. 3033-3046, Dec. 2011. (journal/conference名稱要統一)
I. Sarkas et al, “W-band 65-nm CMOS and SiGe BiCMOS transmitter and receiver with lumped I-Q phase shifters,” in Proc. IEEE Radio Frequency Integrated Circuit Symp. (RFIC), Jun. 2009, pp. 441-444.Radio Frequency Integrated Circuits, Jun. 2009, pp. 441-444.
HsiehH.-Hung H. Hsieh, and LiangL.-Hung H. Lu, “A V-Band CMOS VCO wth an admittance-transforming cross-coupled pair, ” IEEE J. Solid-State Circuits, vol. 44, no.6, pp. 1689-1696, Jun. 2009.
Wei W. L. Chan, and John J. R. Long, “A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply,” IEEE J. Solid-State Circuits, vol. 45, no.3, pp. 554-564, Mar.ch 2010.
Jri J. Lee, YiY.-An A. Li, MengM.-Hsiung H. Hung, and ShihS.-Jou J. Huang, ” A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 45, no.12, pp. 2746-2756, Dec. 2010.
HongH.-Yuan Y. Yang, JengJ.-Han H. Tsai, ChiC.-Hsueh H. Wang, ChinC.-Shen S. Lin,WeiW.-Heng H. Lin, KunK.-You Y. Lin,TianT.-Wei W. Huang, and Huei H. Wang, “Design and Analysis of a 0.8–77.5-GHz Ultra-Broadband Distributed Drain Mixer Using 0.13-μm CMOS Technology,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 3, pp.562-572, Mar. 2009. IEEE Trans. Microw. Theory Tech., vol. 57, no. 3, pp. 562–572, Mar.ch 2009.
Amin A. Q. Safarian, Ahmad A. Yazdi, and Payam P. Heydari, “Design and Analysis of an Ultrawide-Band Distributed CMOS Mixer,” IEEE transaction(?), Very Large Scale Integration (VLSI) systems, vol. 13, no. 5, May 2005
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *