帳號:guest(18.222.21.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳思諭
作者(外文):Wu, Ssu-yu
論文名稱(中文):調變閘極介電層及類磊晶矽薄膜通道厚度製作快速寫入/抹除之非揮發性記憶體
論文名稱(外文):Fabrication of fast program/erase charge-trapping non-volatile memory using barrier-engineered dielectric and ultra-thin epi-like Si channel
指導教授(中文):吳孟奇
楊智超
口試委員(中文):劉埃森
何充隆
謝嘉民
楊智超
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063524
出版年(民國):103
畢業學年度:103
語文別:英文
論文頁數:112
中文關鍵詞:非揮發性記憶體能帶工程記憶體超薄類磊晶矽薄膜高介電常數材料
外文關鍵詞:non-volatile memorybarrier-engineered dielectricultra-thin epi-like SiMONOSHigh-κ material
相關次數:
  • 推薦推薦:0
  • 點閱點閱:87
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文以尖峰式雷射結晶(Pulse Laser Crystallization/green nanosecond laser spike annealing)技術,應用於非揮發性記憶體之主動層通道結晶製程,此高品質的多晶矽材料,可稱為“類磊晶矽”(epi-like Si),並且可以使非晶矽薄膜轉換成具有1000 nm晶粒大小之類磊晶矽薄膜,同時利用化學機械研磨技術可將其表面平均粗糙度由37A降低為5A,可獲得具超薄(13 nm)平坦化之類磊晶矽薄膜通道,而以此低熱預算(< 450℃)特性結合金屬閘極,可成功開發出具有高效能之非揮發性記憶體,其次臨界擺幅可達170 mV/Decade以內以及開/關電流比可超過10^6。
此外,以感應耦合式電漿化學氣相沉積系統在低溫下製程(< 450℃)以及原子層沉積系統來沉積高介電值材料(Al2O3),可沉積出低缺陷與高品質的介電層。並藉由能帶工程技術可成功的調變閘極介電層來製作氧化層/氮化層/(氧化鋁/)氧化層之金屬閘極非揮發性記憶體(VARIOT MONOS NVM),並且使其性能與可靠度大幅提升,而操作電壓可以在7V與9V時,進行快速寫入(50 ns及100 ns),而其記憶窗口分別為1.2V與1.9V,同時也具有優良的資料保持力,預估十年後電荷流失可維持在30%以內,另外,在元件耐久力方面,可以在經過1000次的重複寫入/抹除後,還具有良好的電性。因此能帶工程技術對於改善非揮發性記憶體的性能與可靠度效果非常優越,必為一個成功的改良技術。在未來,亦可發展成更複雜更有潛力的堆疊型非揮發性記憶體(Stacking Non-Volatile Memory)。
In this thesis, Pulse Laser Crystallization/green nanosecond laser spike annealing technique is applied to fabricate crystallized active layer channel, which consists of high quality poly-silicon material known as epi-like Si, of non-volatile memory (NVM). This technique turns amorphous silicon thin film into epi-like Si with 1000nm grain size, followed by CMP to reduce surface roughness from 37A to 5A, and ultra-thin (13nm) planarized epi-like silicon thin film channel is obtained. Due to the low thermal budget (< 450℃) of the process, when integrated with metal gate, high performance non-volatile memory can be developed with subthreshold swing below 170 mV/Decade and high on/off ratio beyond 10^6.
In addition, with inductively coupled plasma chemical vapor deposition system (ICPCVD) at low temperature process and depositing high-κ material (Al2O3) with ALD, low defect and high quality dielectric can be obtained. By applying barrier engineering technique to gate dielectric, metal gate NVM comprised of oxide / oxide / (Al2O3/) oxide is successfully demonstrated, abbreviated as VARIOT MONOS NVM, and thus performance and reliability is greatly improved. With program voltage at 7V and 9V, the device exhibits 1.2V and 1.9V memory window with 50ns and 100ns pulse width, respectively, and good data preservation of charge loss after 10 years is estimated to be within 30% as well. Besides, in terms of endurance, good electrical characteristic is retained after 1000 program/erase cycles. Therefore, barrier engineering technique having superiority in performance and reliability must be a successful modification technique, and can be developed into promising Stacking Non-Volatile Memory.
Contents
摘要
Abstract
Acknowledgement
Contents
List of Figures
List of table
Chapter 1 Introduction
1.1. Preface
1.2. Thin Film Transistors
1.2.1. a-Si thin film
1.2.2. Poly-Si thin film
1.2.3. epi-like Si thin film transistors
1.3. Volatile memory and Non-volatile memory
1.3.1. Historical review
1.3.2. Floating gate memory
1.3.3. Development of flash memory
1.4. Tunnel barrier engineering of Non-volatile Flash memory
1.5. Application of High-κ material
Chapter 2 Basic Principle and Analysis
2.1. Operating principle of MOSFET
2.2. Electrical analysis of MOSFET I-V
2.3. Capacitor-Voltage operating principle
2.4. Physical Mechanism of Non-volatile Flash memory
2.4.1. Direct Tunneling, DT
2.4.2. Channel Hot Electron Injection, CHEI
2.4.3. Band to Band Tunneling Hot Hole Injection, BBHHI
2.4.4. Fowler-Nordheim Tunneling, F-N tunneling
2.4.5. Electron moving mechanism in silicon nitride
2.5. Reliability of Non-volatile Flash memory
2.5.1. Retention of Non-volatile memory
2.5.2. Endurance of Non-volatile memory
Chapter3 Experimental Equipment and Device fabrication
3.1. Experimental Instrument
3.1.1. Horizontal furnace
3.1.2. Atomic layer deposition system
3.1.3. Inductively-coupled plasma chemical vapor deposition system
3.1.4. Laser system
3.1.5. Chemical mechanical polishing
3.1.6. Electron-Beam lithography
3.1.7. Metal dry etching
3.1.8. Ion implantation
3.1.9. Measurement system
3.2. Material analysis
3.2.1. Raman Spectroscopy
3.2.2. Scanning Electron Microscopy, SEM
3.2.3. X-ray Photoelectron Spectroscopy, XPS
3.2.4. Atomic Force Microscopy, AFM
3.3. Capacitance Fabrication
3.4. Fabrication of NVM with Laser Crystallized epi-like Si Channel
3.4.1. Process of MONOS NVM
3.4.2. Process of stacking tunneling oxide MONOS NVM
Chapter 4 Results and discussion
4.1. epi-like Si Thin Film by Laser Crystallization
4.1.1. Laser crystallization of amorphous silicon with different thickness
4.1.2. Chemical mechanical polishing for epi-like Si thin film by laser crystallization
4.1.3. Raman scatter spectra for laser crystallized epi-like Si
4.1.4. XRD analysis for laser crystallized epi-like Si
4.2. epi-like Si channel by Laser Crystallization with CMP Techniques
4.2.1. epi-like Si TFT by laser crystallization with CMP techniques
4.2.2. Different thickness epi-like Si channel polished by CMP in MONOS NVM
4.2.3. Different thickness epi-like Si channel polished by CMP in Tunnel barrier engineered MONOS
4.3. N-rich in middle nitride capacitance and MONOS NVM
4.3.1. MONOS NVM mechanism of Uniform and Non-uniform nitride
4.3.2. C-V curve of different nitrogen ions in charge storage layer
4.3.3. XPS depth profile of Oxide-Nitride-Oxide dielectric
4.3.4. P/E speed of Uniform and Non-uniform nitride MONOS NVM
4.3.5. Retention of Uniform and Non-uniform nitride MONOS NVM
4.3.6. Endurance of Uniform and Non-uniform nitride MONOS NVM
4.4. Tunnel barrier engineering capacitance and MONOS NVM
4.4.1. Purpose for Tunnel barrier engineering Research
4.4.2. C-V curve of different nitrogen ions in charge storage layer
4.4.3. XPS depth profile analysis of Oxide-Aluminum oxide-Nitride-Oxide dielectric
4.4.4. P/E speed of Tunnel barrier engineered MONOS NVM
4.4.5. Retention of Tunnel barrier engineered MONOS NVM
4.4.6. Endurance of Tunnel barrier engineered MONOS NVM
Chapter 5 Conclusions
5.1. Conclusion
5.2. Future work
Reference


[1] Y.H. Lin , C.H. Chien et. al , "Low-Temperature Polycrystalline Silicon Thin-Film Flash Memory With Hafnium Silicate, " IEEE Transaction on Electron Devices, Vol. 54, No. 3, March 2007.
[2] H.S. a. R. Swann, "Chemical vapour deposition promoted by rf discharge," Solid-State Electronics, vol. 8, pp. 653-654, 1965.
[3] R. Chittick, "The preparation and properties of amorphous silicon," Journal of the Electrochemical Society, Vol. 116, p. 77, 1969.
[4] R.E.I. Schropp and M. Zeman, "Amorphous and Microcrystalline Solar Cells: Modeling, Materials, and Device Technology,"Kluwer Academic Publishers, 1998.
[5] W. G. Hawkins, “Polycrystalline-Silicon Device Technology for Large-Area Electronics,” IEEE Transaction on Electron Devices, Vol. ED-33, No. 4, pp. 477-481, April 1986.
[6] Marmorstein, A, "A systematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed polysilicon thin films." Journal of Applied Physics 82(9): 4303-4309, 1997.
[7] C.L. Wang , I.C. Lee et al , High-Performance Polycrystalline-Silicon Nanowire Thin-Film Transistors With Location-Controlled Grain Boundary via Excimer Laser Crystallization , IEEE Electron Device Letters, Vol. 33, No. 11, November 2012.
[8] S. K. Lai, "Floating gate memories: Moore's law continues," International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), pp. 74-77, 2005.
[9] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, "Introduction to Flash memory," Proceedings of the IEEE, Vol. 91, pp. 489-502, 2003.
[10] M. H. White, D. A. Adams and J. Bu, "On the go with SONOS," IEEE Circuits and Devices Magazine, Vol. 16, pp. 22-31, 2000.
[11] J. K. Bu and M. H. White, "Design considerations in scaled SONOS nonvolatile memory devices," Solid-State Electronics, Vol. 45, pp. 113-120, 2001
[12] D. Kahng and S. M. Sze, "A floating gate and its application to memory devices," Bell System Technical Journal, Vol. 46, pp. 1288-1295, 1967.
[13] J. R. Cricchi, F. C. Blaha, and M. D. Fitzpatrick, "The drain-source protected MNOS memory device and memory endurance," Digest of the 1973 International Electron Devices Meeting (IEDM), pp. 126-129, 1973.
[14] Y. Yatsuda, T. Hagiwara, R. Kondo, S. Minami, and Y. Itoh, "N-channel Si-gate MNOS device for high speed EAROM," Proceedings of 10 th Conference on Solid State Devices, pp. 21-26, 1979.
[15] M. L. French, C. Y. Chen, H. Sathianathan and M. H. White, "Design and scaling of a SONOS multidielectric device for nonvolatile memory applications," IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 17, pp. 390-397, 1994.
[16] A. Shappir, E. Lusky, G. Cohen, and B. Eitan, "NROM Window Sensing for 2 and 4-bits per cell Products," Non-Volatile Semiconductor Memory Workshop (NVSM), Vol. 21, pp. 68-69, 2006.
[17] Bauer, M; Alexis, R; Atwood, G , "A multilevel-cell 32 Mb flash memory." Solid-State Circuits Conference, 1995. Digest of Technical Papers. 41st ISSCC, 1995 IEEE International.
[18] M. H. White, D. Adams and J. Bu, "On the Go with SONOS, " IEEE Circuits Devices Mag., pp. 22-31, 2000.
[19] Konstantin K. Likharev , "Layered Tunnel Barriers for Nonvolatile Memory Device," Applied Physics Letters, Vol.73, No.15, 1998
[20] H.T. Lue, S.Y. Wang, E.K. Lai, Y.H. Shih, S.C. Lai, L. W. Yang, K. C. Chen, J. Ku, K.Y. Hsieh, R. Liu, and C.Y. Lu, "BE-SONOS: a bandgap engineered SONOS with excellent performance and reliability," IEEE IEDM Tech. Dig., pp. 555-558, 2005.

[21] P. H. Tsai et al, “Novel SONOS-type nonvolatile memory device with optial Al doping in HfAlO charge-trapping layer,” IEEE Electron Device Lett, Vol. 29, pp. 265-268, 2008.
[22] S.Maikap et al , ”Band offsets and charge storage characteristics of atomic layer deposited high-k HfO2/TiO2 multilayers,” Appl. Phys. Lett, Vol. 90, pp. 262901, 2007.
[23] S. Maikap et al, ”Charge trapping characteristics of atomic-layer-deposited HfO2 films with Al2O3 as a blocking oxide for high-density non-volatile memory device applications,”Semicond. Sci. Technol, Vol. 22, pp. 884-889, 2007.
[24] J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices, Journal of Vacuum Science Technology – Part B 18 (2000) 1785–1791.
[25] 蕭宏, 半導體製程技術導論:學銘圖書有限公司, 2007.
[26] http://www.fairchildsemi.com/
[27] 施敏, 半導體元件物理學:國立交通大學出版社 , 2008
[28] 高毓聰,「利用高密度電漿閘極介電質於可堆疊電晶體和非揮發性記憶體」, 國立交通大學, 碩士論文, 民國102年。
[29] H. Bachhofer, H. Reisinger, E. Bertagnolli, and H. von Philipsborn, "Transient conduction in multidielectric silicon–oxide–nitride–oxide semiconductor structures," Journal of Applied Physics (JAP), Vol. 89, No. 5, pp. 2791-2800, 2001.
[30] W.-K. Chen, " Memory, microprocessor, and ASIC," CRC Press, 2003.
[31] P. E. Cottrell, R. R. Troutman, and T. H. Ning, "Hot electron emission in n-channel IGFET’s," IEEE Transactions on Electron Devices (T-ED), Vol. 26, pp. 520-533, 1979.
[32] 李祥丞, 「電荷儲存層微縮對SONOS型非揮發性記憶體之影響」, 國立清華大學, 碩士論文, 民國98年。
[33] M. Lenzlinger and E. H. Snow, "Fowler-Nordheim tunneling in thermally grown SiO2 ," Journal of Applied Physics (JAP), Vol. 40, pp. 278-283, 1969.
[34] B. L. Yang, P. T. Lai, and H. Wong, "Conduction mechanisms in MOS gate dielectric films," Microelectronics Reliability, Vol. 44, pp. 709-718, 2004.
[35] Ishida, Takeshi; Mine, Toshiyuki; Hisamoto, Digh," Electron-Trap and Hole-Trap Distributions in Metal/ Oxide/ Nitride/ Oxide/ Silicon Structures" IEEE Transactions on Electron Devices, Vol. 60(2), pp. 863-869, 2013.
[36] 凃政暉,「微晶矽薄膜電體及記憶元件」, 國立交通大學, 碩士論文, 民國 101 年。
[37] Badih El-Kareh,Fundamentals of Semiconductor Processing Technology
[38] W. C. Nixon, Phil. Trans. Ray. Soc. Lond. B. 261, 45 (1971).
[39] 邱宥浦,「微結晶矽材料於電子及光電元件之應用」, 國立交通大學, 博士論文, 民國 103 年。
[40] C.Y Ma, T.Y. Chiang et. al, "Channel Film Thickness Effect of Low-Temperature Polycrystalline-Silicon Thin-Film Transistors ," IEEE Transactions on Electron Devices, Vol. 58, No. 4, April 2011.
[41] B.E. Warren X-ray Diffraction, (Classic x-ray physics book) by, General Publishing Company, 1969, 1990.
[42] Droz M C. Thin film microcrystalline silicon layers and solar cells: microstructure and electrical performances. PhD Thesis, Universite de Neuchatel, Switzerland, 2003: 11.
[43] M.H. White, Y.R. Wang et. al, "Advancements in nanoelectronic sonos nonlatile semiconductor memory (NVSM) devices and technology," SELECTED TOPiCS IN ELECTRONIC AND SYSTEMS, Vol. 41, pp. 479-501.
[44] H.C. Chien, C.H. Kao et.al, "Two-bit SONOS type Flash using a band engineering in the nitride layer," Microelectronic Engineering, Vol. 80, pp. 256–259, 2005.
[45] A. Goetzberger, E. Klausmann and M. J. Schulz, " Interface states on semiconductor/insulator interface, " CRC Crict. Rev. Solid State Sci. 6, pp.1-43, 1976.
[46] G. Declerck : "Characterization of surface states at the Si-SiO2 interface, "in Nondestructive Evaluation of of Semiconductor Materials and Devices (J. N. Zemel, ed) Plenum Press, New York, pp.105-148, 1979.
[47] A. Furnémont, M. Rosmeulen et.al, " Physical Understanding of SANOS Disturbs and VARIOT Engineered Barrier as a Solution," IEEE Transactions on Electron Devices, 2007
[48] K.K. Likharev, " Layered tunnel barriers for nonvolatile memory devices, "Applied Physics Letters, Vol 73, No 15, pp.2137-2139, October 1998
[49] N.H. Chen, C.Y. Wang et. al, " MOCVD Al Nanocrystals Embedded in AlOxNy Thin Films for Nonvolatile Memory," ECS Journal of Solid State Science and Technology, Vol.1(4), pp.190-P196, 2012
[50] Y.C. Lien,J.M Shieh, " Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,Applied Physics Letters," Vol.100, pp.1-4, 143501(2012)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *