帳號:guest(3.138.118.215)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李彥臻
作者(外文):Li, Yen-Chen
論文名稱(中文):應用於鋰離子電池充電器之切換式太陽能板直流-直流升壓電路
論文名稱(外文):A DC-DC Converter for Li-ion Battery Charger with a Solar Panel
指導教授(中文):徐永珍
指導教授(外文):Hsu, Klaus Yung-Jane
口試委員(中文):盧向成
裴靜偉
口試委員(外文):Lu, Michael S.-C.
Pei, Zingway
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063523
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:94
中文關鍵詞:升壓轉換器電流式直流轉換器電感電流偵測
外文關鍵詞:Boost ConverterCurrent Mode DC-DC ConverterCurrent-Sensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:413
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
在經濟活動全球化的浪潮下,個人使用之電子產品漸漸往可攜式、重量輕、功能強的方向發展。然而在能源有限的狀況下,經濟活動領域的加大與經濟活動愈加頻繁且迅速增加,造成全球暖化、環境污染的情形也相應的嚴重。為此人們逐漸提倡綠能意識,而其中以再生能源為重要議題。以再生能源為例,無論是太陽能板抑或是可攜式發電機,其特點皆為微小且不穩定,故本論文將針對太陽能板之能源回收設計一升壓電路使其克服上述之問題。
本文將說明直流-直流升壓電路原理,並針對不同架構的回授電路作探討,接著介紹本次設計之架構取捨,設計一轉換效率佳且輸入範圍廣之能源回收電路,作為能源回收的重要媒介。本次設計於模擬時,輸入電壓範圍由1.35V~2V,偵測電感電流之線性度可達1安培,而輸出電壓可達到4.2V,負載電流供給範圍為10~100毫安培之間,而轉換效率可達85%以上,將輸出電壓供給鋰離子電池充電使用,並將功率電晶體整合於晶片之中,希望能將此晶片整合於可攜式充電器系統之中。
本晶片為TSMC 0.35um 2P4M標準製程實現,晶片面積為:1406um*1537um 。
Since the economic activities are going globalization, the developments of the personal electronic products are gradually toward portable, lightweight and powerful. However, all kinds of energy resources from the Earth are limited. Because the economic activities increased rapidly, the global warming and environmental pollution have been getting more serious. For this reason, people start promoting the Green-Energy consciousness in which the renewable energy source is a very important topic. An important character of the renewable energy source, either solar panels or portable generators, is that the generated power is small, unstable and inconvenient for direct use. Therefore, to solve the problem, a DC-DC boost converter for adapting the energy output from a solar panel has been designed in this thesis.
This thesis will explain the DC-DC boost circuit theory and discuss different structures for feedback circuits, then introducing the choice of this design. The simulation results of this design: The input voltage range is from 1.35V to 2V. The linearity range of the detecting inductor current could reach 1 Amp. The output voltage is up to 4.2V. The range of the load current is between 10mA to 100 mA. And the conversion efficiency is up to 85% or above. The output voltage can be applied for Li-ion battery charger and the power MOS has been combined in one single chip. It is hopeful to integrate this chip into a portable charger system.
The chip area is in TSMC 0.35um 2P4M CMOS standard process.


摘要 i
Abstract ii
目錄 iii
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 直流-直流轉換器分類 3
1-4 本文章節 4
第二章 太陽能電池之原理與特性 5
2-1 太陽能電池之歷史發展背景 5
2-2 p-n接面太陽能電池發電原理 5
2-3 太陽能電池之種類[4] 6
2-3-1 矽(Silicon Type)太陽能電池 6
2-3-2 化合物太陽能電池 7
2-3-3 有機太陽能電池 8
2-4 太陽能電池之等效電路分析 8
第三章 基本切換式直流-直流轉換器原理與分析 12
3-1 切換式轉換器基本架構 12
3-1-1 降壓式轉換器(Buck Converter) 12
3-1-2 升降壓轉換器(Buck-Boost Converter) 15
3-1-3 升壓式轉換器(Boost Converter) 17
3-2 升壓式轉換器之控制原理 22

3-2-1 脈波寬度調變(Pulse Width Modulation; PWM) 22
3-2-2 脈波頻率調變(Pulse Frequency Modulation; PFM) 22
3-3 升壓式轉換器之類比式控制電路架構[6] 24
3-3-1 電壓式脈波寬度調變控制(Voltage Mode Pulse Width Modulation) 24
3-3-2 電流式脈波寬度調變控制(Current Mode Pulse Width Modulation) 25
3-3-3 電壓式脈波頻率調變控制(Voltage Mode Pulse Frequency Modulation) 26
3-3-4 電流式脈波頻率調變控制(Current Mode Pulse Frequency Modulation) 27
3-4 升壓式轉換器之數位式控制器[7] 28
3-4-1 數位脈波寬度調變器之種類 28
3-4-2 極限循環振盪(Limit Cycling)[10] 30
3-5 切換式直流-直流轉換器控制架構比較與考量 31
3-5-1 切換式直流-直流轉換器控制架構比較 31
3-5-2 電流回授控制法 32
3-5-3 次諧波振盪與斜率補償[14] 34
3-5-4 轉換效率(Efficiency)分析 36
第四章 電路設計 37
4-1 電路設計流程及規格訂定 37
4-1-1 電路設計流程與考量 37
4-1-2 電路設計之規格 38
4-2 系統架構 39
4-3 運算放大器(Operational Amplifer; OPAmp) 40
4-3-1 運算放大器之基本介紹 40

4-3-2 二級式運算放大器 41
4-3-3 具軟啟動功能與補償器之誤差放大器 42
4-4 帶差參考電路(Bandgap Reference) 44
4-4-1 帶差參考電路之基本原理 44
4-4-2 抗供應電壓源變異及溫度變異之帶差參考電壓及電流電路 44
4-5 比較器(Comparator) 50
4-5-1 比較器之基本介紹 50
4-5-2 磁滯比較器(Hysteresis Comparator)[18] 54
4-6 斜波振盪產生器(Ramp and Oscillator Generator) 56
4-6-1 傳統斜波振盪產生器[15] 56
4-6-2 改良式斜波振盪產生器 57
4-7 電感電流偵測電路 59
4-7-1 電感電流偵測技術介紹 59
4-7-2 On-chip之電感電流偵測電路 59
4-8 電壓-電流轉換電路[15] 62
4-9 栓鎖電路(Latch) 64
4-10 死區時間控制(Dead Time Control)電路 64
4-11 電位轉移(Level Shifter)電路[21] 65
4-12 驅動電路 66
第五章 晶片模擬與佈局 67
5-1 晶片佈局與考量 67
5-2 電路模擬 71
5-2-1 補償器模擬 71
5-2-2 帶差參考電路模擬 71

5-2-3 磁滯比較器模擬 74
5-2-4 斜波振盪產生器模擬 74
5-2-5 電感電流偵測電路模擬 75
5-2-6 電壓電流轉換器模擬 76
5-2-7 SR栓鎖電路模擬 76
5-2-8 死區時間控制電路模擬 77
5-2-9 電位轉移電路模擬 77
5-2-10整體電路模擬結果 78
5-3 晶片佈局 80
第六章 量測結果與討論 82
6-1 量測平台建立 82
6-2 預計採取之量測步驟說明 83
6-3 量測結果 85
6-3-1 帶差電路參考電路啟動問題 85
第七章 結論與後續研究建議 90
7-1 結論 90
7-2 後續研究建議 91
參考文獻 92
[1] http://www.ren21.net/Portals/0/documents/activities/gsr/RE_GSR_2006_Update.pdf, Renewable Energy Policy Network for the 21st Century, Global Status Report, 2006.
[2] http://www.bp.com/content/dam/bp/pdf/Energy-economics/statistical-review-2014/BP-statistical-review-of-world-energy-2014-full-report.pdf, BP Statistical Review of World Energy, June 2014.
[3] “Power,” National Semiconductor High-Performance Analog Seminar,
pp. 7.2-7.26, August 2007.
[4] KRI Report No. 8: Solar Cells, February 2005.
[5] Anthony John Stratakos, “High-Efficiency Low-Voltage DC-DC conversion for
portable applications,” Ph. D. Thesis, University of California, Berkeley, 1998.
[6] Robert Mammano, “Switching power supply topology voltage mode vs.
current mode,” Unitrode Corporation Design Note, 1999.
[7] B.J. Patella, A. Prodic, A. Zirger and D. Maksimovic, “High-Frequency digital
PWM controller IC for DC-DC converters,” IEEE Transactions on Power Electronics , vol. 18, no. 1, pp. 438-446, Jan. 2003.
[8] A. Syed, E. Ahmed and D. Maksimovic, “Digital pulse width modulator architectures,” IEEE Power Electronics Specialists Conference, vol. 6,
pp. 4689-4695, 2004.
[9] A. Djemouai, M. Sawana and M. Slamani, “New CMOS integrated pulse width modulator for voltage conversion application,” IEEE International Conference on Electronics, Circuits and Systems, vol. 1, pp. 116-119, 2000.
[10] A.V. Peterchev and S. R. Sanders, “Quantization resolution and limit cycling in
digitally controlled PWM converters, ” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 301-308, Jan. 2003.
[11] Jih-Sheng Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” IEEE Applied Power Electronics Conference and Exposition, pp. 267-273, 1993.
[12] Lloyd Dixon, “Average current mode control of switching power supplies,” Unitrode Application Note, U140, pp. 356-369, 1999.
[13] C. Zhou, R.B. Ridley and F.C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” IEEE Annual Power Electronics Specialists Conference,” pp. 800-807, 1990.
[14] R.W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publish, pp. 107-487, 2001.
[15] C.F. Lee and P.K.T. Mok, “A monolithic current-mode CMOS DC-DC Converter
with on-chip current sensing technique,” IEEE Journal of Solid-State Circuits, vol. 39, issue 1, pp. 3-14, Jan. 2004.
[16] D.W. Hart, Introduction to Power Electronics, Prentice Hall, 1996.
[17] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill,
pp. 309-314, 2001.
[18] P. E. Allen and R. Holberg, CMOS Analog Circuit Design, 2nd edition, Oxford, 2002.
[19] K.N. Leung, P.K.T. Mok, “A sub 1V 15ppm CMOS bandgap voltage
reference without requiring low threshold voltage device,’’ IEEE Journal of Solid-State Circuits, vol. 37, pp. 526-530, April 2002.
[20] H.P. Forghani-zadeh and G.A. Rincon-Mora, “Current-Sensing techniques
for DC-DC converters,” Midwest Symposium on Circuits and Systems, vol. 2,
pp. II-577-II-580, 2002.
[21] C.Y. Leung, P.K.T. Mok and K.N. Leung, “A 1-V integrated current-mode boost converter in standard 3.3/5-V CMOS technologies,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2265-2274, Nov. 2005.
[22] Xuehui Tao and Jianping Xu, “Integrated CMOS current-sensing circuit for current-mode boost converters,” IEEE International Conference on Industrial Technology, pp. 1-5, 2008.
[23] Xuehui Tao and Jianping Xu, “Integrated current-sensing circuit with offset-current cancellation for boost converters,” International Conference on Communications, pp. 1328-1331, 2008.
[24] Ming-Bo Lin, Introduction to VLSI Systems: A Logic, Circuit, and System Perspective. CRC Press, pp. 263-271, 2011.
[25] T. Y. Man, P. K. T. Mok, and M. J. Chan, “A 0.9-V input discontinuous conduction mode boost converter with CMOS-Control rectifier,” IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp. 2036-2046, September 2008.
[26] “90% efficient synchronous boost converter with 600mA switch,” TPS61071-Q1 Datasheet, Texas Instruments Inc., 2013.
[27] Xiaocheng Jing and P.K.T. Mok, “A Fast Fixed-Frequency Adaptive-On-Time Boost Converter With Light Load Efficiency Enhancement and Predictable Noise Spectrum, ” IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2442 - 2456, Oct. 2013.

(此全文限內部瀏覽)
電子全文
摘要檔案
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *