帳號:guest(13.58.72.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王羽榛
作者(外文):Wang, Yu-Chen
論文名稱(中文):微型可調變近紅外光濾波器製作與研究
論文名稱(外文):Design and Fabrication of Tunable MEMS-Based Fabry- Pérot Filter on NIR Wavelength
指導教授(中文):吳孟奇
何充隆
指導教授(外文):Wu, Meng-Chyi
Ho, Chong-Long
口試委員(中文):劉埃森
楊智超
口試委員(外文):Ai-Sen Liu
Chih-Chao Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063516
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:57
中文關鍵詞:法布立-培若濾波器微機電近紅外光
外文關鍵詞:Fabry-Pérot FilterMEMSNIR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:715
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
隨著人類科技文明的進步,手機通訊已成人們生活中無可缺少的必需品,而近年來,樂活養生的風潮興起,人們亦開始注意居住飲食及生活品質。近紅外光在物質檢測上有著相當不錯的鑑別度,藉此,近紅外光檢測可應用於生活環境(如塑膠)及人體(如血糖)檢測上。
本論文研究以類共振腔的原理,在矽基板上採用微光機電製程技術(MOMES),實現可經由電壓調變波段之近紅外光Fabry-Pérot濾波器(FPF)。此一微型近紅外光濾波器搭配近紅外光感測器,研製可搭載於行動智慧裝置之微型近紅外光檢測模組。
近紅外光於人體檢測上有相當不錯的準確性,利用此微型可調變近紅外光濾波器結合感測器,可應用於健康照護之生醫領域,將有不錯的效益及經濟價值。
In recent year, the quality of life draws more and more attention, which people begin to care about details of daily life. On the other hand, with the increase of technology level, the mobile devices like smartphone are easily used in daily life. In addition, the sensor of near-infrared (NIR) wavelength has great accuracy on examined technology. Because of paying more attention to our living days, the NIR detector has an excellent potential to be put in use in our life like plastics test or bioinstrumentation and so on.
This study describes the design and fabrication of wavelength-tunable MEMS-based band-pass filter on silicon which it changes the air gap by voltage.
Contents
Abstract Ⅰ
Acknowledgement Ⅲ
Contents Ⅳ
List of figures Ⅵ
List of Tables Ⅷ
Chapter 1 Introduction 1
1.1 Original 1
1.2 Motivation 3
Chapter2 Theory 7
2.1 Basic 7
2.2 Distributed Bragg Reflector 8
2.3 Fabry-Pérot Filter 9
Chapter3 Experimental Method 12
3.1 Simulation and Design 12
3.2 Experimental Method and Process 14
3.3 Measurement System 17
3.3.1 The C-V measurement System 17
3.3.2 The transmittance measurement by Mission Peak Optics 17
3.3.3 The photocurrent measurement by Monochromator 18
Chapter 4 Experiment and Discussion 22
4.1 The Deposition of Distributed Bragg Reflector 22
4.1.1 The Effect of the Deposition Condition 22
4.1.2 The Effect of the Thermal Treatment 24
4.2 The Deposition of Zinc Oxide Thin Film 26
4.2.1 The Deposition of Zinc Oxide Thin Film by RF-Sputter 26
4.2.2 The Effect of Zinc Oxide Thin Film after Thermal Treatment 28
4.3 The Deposition of the Upper Electrode Thin Film 29
4.4 The Wet Etching Process 30
4.5 C-V Measurement 32
4.5.1 Compare the Difference of C-V measurements before and after Etching the Sacrificial Layer 32
4.5.2 The Relationship with Capacitance Variation and Voltage Modulation 33
4.6 The Effect of Tunable range with Bias 37
4.6.1 Transmittance Measurement with Bias by Mission Peak Optics 37
4.6.2 Photocurrent Measurement with Bias by Monochromator 39
Chapter 5 Conclusions and Future Work 54
4.6.1 Conclusions 54
4.6.2 Future Work 54
Reference 56
[1]J. H. Jerman, D. J. Clift, and S. R. Mallinson, “A miniature Fabry-Perot interferometer with corrugated silicon diaphragm support”, Sens. Actuators A, 29, 151 (1991).
[2]D. Rossberg, “Silicon micromachined infrared sensor with tunable wavelength selectivity for application in infrared spectroscopy”, Sens. Actuators A, 47, 413 (1995).
[3] R. Le Dantec, T. Benyattou, G. Guillot, A. Spisser, C. Seassal, J. L. Leclercq,
P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable Microcavity Based on
InP–Air Bragg Mirrors”, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 5, NO. 1, JANUARY/FEBRUARY ( 1999).
[4] Jason S. Milne, Adrian J. Keating, John M. Dell, and Lorenzo Faraone,” MEMS-based Tunable Fabry-Perot Filters on Silicon Substrates”, Optoelectronic and Microelectronic Materials and Devices, 2008. COMMAD 2008. Conference on, p. 174 – 180 (2008).
[5] J. Antoszewski, K. J. Winchester, T. Nguyen, A. J. Keating, K. K. M. B. Dilusha Silva, C. A. Musca, J. M. Dell, and L. Faraone, “Materials and processes for MEMS-based infrared microspectrometer integrated on HgCdTe detector,” IEEE J. Select. Topics Quantum Electron., 14, 1031 (2008).
[6]A. J. Keating, J. Antoszewski, K. M. Konkaduwa, B. D. Silva, K. J. Winchester, T. Nguyen, J. M. Dell, C. A. Musca, L. Faraone, P. Mitra, J. D. Beck, M. R. Skokan, and J. E. Robinson, “Design and characterization of Fabry–Perot MEMS-based short-wave infrared microspectrometers,” J. Electron. Mater., 37, 1811 (2008).
[7] KJ. Winchester, J.M. Dell,” Finite Element Analysis of Tunable Fabry Perot MEMS Structures”, Optoelectronic and Microelectronic Materials and Devices, 2000. COMMAD 2000. Proceedings Conference IEEE, Dec. 2000, p.324-327
[8] Huang, H. ,Liu, Y., Hu, X.Z., Bush, M.B., Winchester, K.J. , Musca, C.A. , Dell, J.M., Faraone, L.,” Mechanical Design and Finite Element Analysis of Tunable Fabry-Perot MEMS Structures for Adaptive Infrared Detectors”, Optoelectronic and Microelectronic Materials and Devices, 2004. COMMAD 2004. Proceedings Conference IEEE, p.205-208.
[9] Byron A. Walmsley, John M. Dell, Yinong Liu, Xiao Zhi Hu, Mark B. Bush, Lorenzo Faraone,” Design and optimisation of a MEMS-based tunable Fabry-Pérot infrared filter”, Optoelectronic and Microelectronic Materials and Devices, 2006. COMMAD 2006. Proceedings Conference IEEE, Dec. 2006, p.272-275
[10] A. J. Keating, K. K. M. B. D. Silva, J. M. Dell, C. A. Musca, and L. Faraone, “Optical Characterization of Fabry–Pérot MEMS Filters Integrated on Tunable Short-Wave IR Detectors”, IEEE Photonics Technology Letters, 18, 9, pp. 1079-1081 (2006)
[11] L. P. Schuler, J. S. Milne, J. M. Dell, and L. Faraone, “MEMS-based microspectrometer technologies for NIR and MIR wavelengths,” J. Phys. D: Appl. Phys., 42, 133001 (2009).
[12] D. C. Flanders, P. S. Whitney, and M. F. Miller, “Silicon on insulator optical membrane structure for Fabry-Perot MOEMS filter,” U.S. Pat. No.6,608,711 (2003).
[13] J. Antoszewski, K. J. Winchester, A. J. Keating, T. Nguyen, K. K. M. B. D. Silva, H. Huang, C. A. Musca, J. M. Dell, and L. Faraone, “A monolithically integrated HgCdTe SWIR photodetector and tunable MEMS-based optical filter,” J. Electron. Mater., 34, 716 (2005).
[14] David Cushing,” Enhanced optical filter design”, SPIE, Washington USA, pp. 1-7 (2011).
[15] H. A. Macleod, “Thin Film Optical Filters”, McGraw-Hill, New York, 3rd ed., pp.20-23
(2001).
[16]P. W. Baumeister, “Optical Coating Technology”, SPIE Press, Bellingham,Washington (2004).
[17] A. J. Thelen, ‘Design of Optical Interference Coatings’, McGraw-Hill, New York
(1989).
[18] H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas,” Distributed Bragg reflectors based on AlN/GaN multilayers”, Appl. Phys. Lett. 74, 1036 (1999)
[19] H. A. Macleod, “Thin Film Optical Filters”, McGraw-Hill, New York, 3rd ed., pp.179-185(2001).
[20] Ju-De Yu, ”Institute of Electro-Optical Engineering”,NCTU(2004).
[21]C. H. Mastrangelo,” Adhesion-Related Failure Mechanisms in Micromechanical Devices”, Tribology Letters, VOL 3, Issue 3, pp 223-238 (1997).
[22]Rashmi Menon, K. Sreenivas, and Vinay Gupta,” Influence of stress on the structural and dielectric properties of rf magnetron sputtered zinc oxide thin film”, J. Appl. Phys. 103, 094903 (2008).
[23] Huei-Huang Lee, “Taguchi Methods: Principles and Practices of Quality Design”,Gau Lih Book Co.,Taiwan,4th ed.(2013).
[24] Nam Ho Kim, Hyoun Woo Kim,” Room temperature growth of zinc oxide films on Si substrates by the RF magnetron sputtering”, Materials Letters 58, pp.938–943(2004)
[25] C. R. Aita, R. J. Lad, and T. C. Tisone,” The effect of rf power on reactively sputtered zinc oxide”, J. Appl. Phys. 51, 6405 (1980).
[26]B.E.Warren, ”X-ray Diffraction”, Dover Pubns,p.253~254 (1990).
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *