帳號:guest(3.144.25.230)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭廸升
論文名稱(中文):石墨烯能谷式之場效應晶體管中的傳輸
論文名稱(外文):Transport in graphene-based valley FETs
指導教授(中文):吳玉書
口試委員(中文):陳啟東
周美吟
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063508
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:52
中文關鍵詞:數值模擬
相關次數:
  • 推薦推薦:0
  • 點閱點閱:130
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們使用格林迭代函數法去研究石墨烯場效應晶體管的穿透率。石墨烯場效應晶體管基本上是由高能隙之位障去局限低能隙的量子線通道區域並由作為源極和汲極之兩區的石墨烯扶手椅奈米帶夾擠組成的準一維的結構。數值結果證實由於能谷軌道交互作用,穿透率會由外界施加在平面上垂直於具有能隙的量子線方向之電場而調變。位障石墨烯之能隙高低,通道長度和寬度,扶手椅奈米帶之長度和寬度之影響會於本文中探討。作為具干射性的裝置,在石墨烯晶體管中的量子干涉現象是可被預期的。特別是Fabry-Perot共振和Fano共振的演範和解釋將會被提出。
We employ the recursive green function method to study the transmission through the valley-FET, which is basically a quasi-one-dimensional structure composed of a quantum wire channel of narrow-gap graphene confined by barriers of wide-gap graphene and sandwiched between armchair graphene nanorribbon (AGNR) source and drain. The numerical result confirms that the transmission can be modulated by applying an external in-plane electric field perpendicular to the wire, due to the valley-orbit interaction (VOI) in gapped graphene. The effects of energy gap of barrier graphene, channel length and width, and AGNR length and width are studied. As coherent devices, interference phenomena in valleytronic devices in valley FETs are expected. In particular, the Fabry-Perot resonance and Fano resonance are demonstrated and explanations of their origins are proposed.
Abstract 1
Chapter 1 Introduction 2
1.1Graphene and Graphene nanoribbons 2
1.2 The Datta-Das spin field-effect transistor 9
1.3 The valley-FET 11
1.4 The Fano resonance 14
1.5 The Rashba-Fano resonance 18
Chapter 2 The theoretical method 20
2.1 The structure of the simulation 20
2.2 The Method of Recursive Green Function 23
2.3 Further details of the recursive Green function method when applied to valley-FETs 27
Chapter3 The results and discussion 32
3.1 The issues studied by the transport calculation 33
3.2 The Rashba coefficient 34
3.3 The Valley-Orbit interaction 36
3.4 The Fabry-Perot resonance and the Fano resonance 40
3.5 The intervalley coupling 49
Chapter4 Conclusion 51
References 52
References
[1]K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004)
[2]D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, T. Chakraborty, Adv. Phys. 59(2010)
[3] Paolo Marconcini, Massimo Macucci, RIVISTA DEL NUOVO CIMENTO Vol. 34, N. 8-9(2011)
[4] A.H.Castro Neto, F.Guinea,N.M.R.Peres,K.S. Novoselov, and A.K.Geim,Rev.Mod.Phys.81,109(2009)
[5]T.Ando,J.Phys,Soc.Jpn.74 777(2005)
[6]K. Majumdar, K. V. R. M. Murali, N. Bhat, Y.-M. Lin, Nano Lette.10,2587(2010)
[7]P. Avouris, Z. Chen, V. Perebeinos, Nature Nanotechnology 2, 605-615(2007)
[8]L. Bery, H.A. Fertig, Phys.Rev.B 73,235411(2006)
[9] Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi
and Toshiaki Enoki, Sci. Technol. Adv. Mater. 11 (2010)
[10] KatsunoriWakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi and Toshiaki Enoki, Sci. Technol. Adv. Mater. 11 054504(2010)
[11] M.-K. Lee, N.-Y. Lue, C.-K. Wen, and G. Y. Wu, Phys.Rev.B 87, 039904(2013)
[12]S.Datta,B.Das,Appl.Phys.Lett.56.665(1990)
[13] Andrey E. Miroshnichenko, Sergej Flach, Yuri S. Kivshar, RevModPhys.82.2257(2010)
[14] David Sánchez1 and Llorenç Serra, Phys.Rev.B 74, 153313
[15]T.Ando,Phys. Rev. B 44,8017(1991)
[16] Dan Erik Petersen, Hans Henrik B. Sorensen, Per Christian Hansen Stig Skelboe, Kurt Stokbro,Journal of Computational Physics, 227 3174–3190(2008)
[17]Supriyo Datta,’’Quantum Phenomena’’,23-28(1989)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *