帳號:guest(18.118.146.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡偉駿
作者(外文):Tsai, Wei-Chun
論文名稱(中文):紫外光臭氧處理空間電荷限制電晶體之影響
論文名稱(外文):The influence of UV Ozone treatment on space charge limited transistor
指導教授(中文):洪勝富
指導教授(外文):Horng, Sheng-Fu
口試委員(中文):孟心飛
冉曉雯
趙宇強
口試委員(外文):Meng, Hsin-Fei
Zan, Hsiao-Wen
Chao, Yu-Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063507
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:45
中文關鍵詞:空間電荷限制電晶體紫外光臭氧有機發光二極體
外文關鍵詞:space-charge-limited-transistororganic light emitting diodeuv ozone
相關次數:
  • 推薦推薦:0
  • 點閱點閱:180
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有機電晶體的發展在近年來已越趨活躍,其同時擁有無機半導體製程所欠缺的低成本與製程簡單、可撓性與大面積化等優點。本論文將針對空間電荷限制電晶體(space-charge-limited transistor, SCLT)元件內部製程改善,使SCLT具有高開關特性、高輸出電流、高穩定度、高重複性以及可低成本的液態製程。過去的SCLT雖然在上注入元件操作下,已經可以達到相當優秀的開關特性;但是為了驅動有機發光二極體(Organic Light Emitting Diode, OLED),必須讓SCLT元件整體的輸出電流、開關特性增加。以往為了增加元件的輸出電流會使用自組裝單層分子(Self-Assembled Monolayer,SAM)來處理空間電荷限制電晶體(SCLT)的垂直奈米孔洞通道,大幅提升輸出電流;本論文則是以紫外光臭氧UV Ozone來處理奈米孔洞基版及元件基極(base electrode),改善元件的絕緣度,並且成功提升了SCLT的輸出電流密度高達10mA/cm2及電晶體開關比特性高達105,此方法同時具有低成本、製程簡單及良好穩定度的優勢。
The organic transistor has become more and more active in recent years due to its advantages such as lower cost, simplicity in process, flexibility and high uniformity in large area which can hardly be found in the silicon transistor. This thesis will restrict transistors (space-charge-limited transistor, SCLT) components for internal process improvement space charge, so SCLT with high switching characteristics, high output current, high stability, high repeatability and low-cost liquid processes. Although SCLT can obtain astonishing

switch ability when working as top-injection device . But in order to drive organic light-emitting diodes (Organic Light Emitting Diode, OLED), must let SCLT element overall output current, increasing the switching characteristics. Elements of the past in order to increase the output current using self-assembled monolayer (Self-Assembled Monolayer, SAM) to handle the space-charge-limited transistor (SCLT) vertical nano porous channels, significantly increasing the output current; This thesis is based on the UV Ozone to process light nano porous base element and the base version (base electrode), the degree of improvement of the insulation element, and to enhance the success of the output current density to SCLT 10mA/cm2 ratio characteristic and high switching transistor105, this method also has the advantages of low cost, process simplicity and good degree of stability.
摘要…………………………………………………..... I
Abstract………………………………..………….….III
目錄…………………………………………………...VI
圖目錄………………………………………………….X
Chapter 1 緒論…………………………………….….1
1-1研究背景……………………………………………………..…..1
1-2研究動機…………………………………………………………2
1-3論文架構………………………………………………………....3
Chapter 2有機材料簡介與空間電荷限制電晶 體原理…………………...….…………..4
2-1有機材料的特性簡介…………………………………….….….4
2-1-1電洞傳輸材料(P3HT)………………....................…...………..5
2-1-2絕緣層材料………………………………………….….……..7
2-2金屬與半導體接面…………..……………………………..…...8
2-3有機共軛高分子載子傳輸理論………….…………………….10
2-4 真空管原理………………………..………………….………...12
2-5 空間電荷限制電晶體結構與原理..………………….………..13

Chapter 3有機垂直式電晶體的相關製程…………15
3-1元件基板的圖樣定義………………………….………..…….15
3-1-1 銦錫氧化物(ITO)玻璃基板……….…..................................16
3-2有機薄膜的塗佈製程……………….…………………………17
3-2-1刮刀塗佈…………………………………….……………….17
3-2-2 旋轉塗佈………………………….……………………...…18
3-3有機藥品的製備方法………………………………………….19
3-3-1 絕緣層材料溶液配製………………………………………19
3-3-2 電洞傳輸層材料溶液配製 ……………………….……….19
3-3-3 聚苯乙烯微米球溶液配製……………………….….……..19
3-4 空間電荷限制電晶體製程實驗…………………….…….….20
3-4-1 奈米金屬網格及柱狀結構之製程……………….………..20
3-4-2 空間電荷限制電晶體(SCLT)的標準製程……………..…22
3-4-3 以紫外光臭氧照射空間電荷限制電晶體(SCLT)………...25
Chapter 4元件電性量測結果與討論………….…...28
4-1 標準SCLT上/下注入元件特性 …….……………………….28
4-2 以紫外光臭氧照射SCLT上/下注入元件特性……………...30
4-2-1 先以RIE處理後再照射UV Ozone之元件特性圖………..30
4-2-2 先照射UV Ozone後再用RIE處理之元件特性…………….34
4-3 紫外光臭氧照射SCLT的特性比較………………………...….37
4-4 紫外光臭氧加O2及N2之元件特性…………………………..40
Chapter 5 總結與未來展望…………………………43
參考文獻……………………………………....45
[1] Y.-C. Chao, H.-F. Meng, and S.-F. Horng, “Polymer space-charge-limited transistor,” Appl. Phys. Lett., vol. 88, no. 22, p. 223510, (2006).
[2] Y.-C. Chao, H.-F. Meng, S.-F. Horng, and C.-S. Hsu, “High-performance solution-processed polymer space-charge-limited transistor,” Organic Electronics, vol. 9, no. 3, pp. 310–316, Jun. (2008).
[3] Y.-C. Chao, Y.-C. Lin, M.-Z. Dai, H.-W. Zan, and H.-F. Meng, “Reduced hole injection barrier for achieving ultralow voltage polymer space-charge-limited transistor with a high on/off current ratio,” Appl. Phys. Lett., vol. 95, no. 20, p. 203305, (2009).
[4] Y.-C. Chao, H.-K. Tsai, H.-W. Zan, Y.-H. Hsu, H.-F. Meng, and S.-F. Horng, “Enhancement-mode polymer space-charge-limited transistor with low switching swing of 96 mV/decade,” Appl. Phys. Lett., vol. 98, no. 22, p. 223303, (2011).
[5] Y.-C. Chao, M.-C. Ku, W.-W. Tsai, H.-W. Zan, H.-F. Meng, H.-K. Tsai, and S.-F. Horng, “Polymer space-charge-limited transistor as a solid-state vacuum tube triode,” Appl. Phys. Lett., vol. 97, no. 22, p. 223307, (2010).

[6] H.-W. Zan, Y.-H. Hsu, H.-F. Meng, C.-H. Huang, Y.-T. Tao, and W.-W. Tsai, “High output current in vertical polymer space-charge-limited transistor induced by self-assembled monolayer,” Appl. Phys. Lett., vol. 101, no. 9, p. 093307, (2012).
[7] M. Aryal, K. Trivedi, and W. C. Hu, Acs Nano 3, 3085 (2009).
[8] H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. D. C. Bradley, Appl. Phys. Lett. 77, 406 (2000).
[9] S. R. Tseng, H. F. Meng, K. C. Lee, and S. F. Horng, Appl. Phys. Lett. 93, 153308 (2008).
[10] J. Clark, C. Silva, R. H. Friend, and F. C. Spano, Phys. Rev. Lett. 98, 206406 (2007).
[11] F. C. Spano, J. Clark, C. Silva, and R. H. Friend, J. Chem. Phys. 130, 074904 (2009).
[12] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, and E. W. Meijer, Synthetic Met. 30
111, 129 (2000).
[13] S. Pal and A. K. Nandi, J. Appl. Polym. Sci. 101, 3811 (2006).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *