帳號:guest(3.149.251.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李季洲
作者(外文):Lee, Chi Chou
論文名稱(中文):高速與低功耗CMOS微型等化器之研製
論文名稱(外文):Design of High-Speed and Low-Power CMOS Miniature Equalizers
指導教授(中文):徐碩鴻
指導教授(外文):Hsu, Shuo Hung
口試委員(中文):孟慶宗
邱煥凱
口試委員(外文):Chin Chun Meng
Hwann Kaeo Chiou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063505
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:60
中文關鍵詞:等化器適應性偏壓
外文關鍵詞:EqualizerAdaptive Bias
相關次數:
  • 推薦推薦:0
  • 點閱點閱:361
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
本論文提出一個超低功耗微型化20Gb/s被動混和主動式等化器以及一個創新的適應性偏壓20Gb/s等化器。
第一個電路提出一個微型化且低功耗的被動混和主動式等化器,被動級等化器不僅僅分擔了主動級等化器在高頻的增益需求,更大大的降低了整體功耗。而為了微型化設計,此作品亦採用了三維被動電感與主動式電感的技術。藉由台積90奈米製程,此作品僅耗費10.8mW功率和0.017mm2面積。補償完180公分的同軸纜線後在22Gb/s的量測中最大的峰對峰抖動值為19ps。
在針對適應性等化器的研究中,第二個電路提出一個創新的適應性偏壓等化器。此種藉由適應性偏壓微調的機制可以簡化傳統回授控制的設計複雜性,消除在雙迴圈控制下會產生的衝突問題,克服比較器的速度限制以及省去迴圈控制電路裡所有額外消耗的面積與功耗。克服了所述適應性等化器的難題,此作品在11GHz的頻率下分別補足了7dB、9dB和11dB的損耗,其量測的最大峰對峰值抖動分別約為9ps、11ps和23ps。
In this thesis, an ultra-low-power miniature 20Gb/s passive/active hybrid equalizer and a novel 20Gb/s adaptive bias equalizer are proposed. In the first work, a compact and low-power passive/active hybrid equalizer is presented. By sharing the loading of high frequency peaking with the active equalizing stage, the passive filtering stage reduces the power significantly. To achieve a small area, the 3D inductor and active inductor techniques have also been incorporated in this design. Implemented in a standard 90 nm CMOS process, this passive/active hybrid equalizer has a very small power consumption of 10.8 mW and occupies a core chip area of only 0.017mm2. It can successfully equalize for the data transmitted through 180-cm coaxial cable line up to 22Gb/s in the measurement, where the peak-to-peak jitter is about 19 ps.
In the second work, a novel adaptive bias equalizer is proposed. By adopting adaptive bias control circuit, the equalization is able to fulfill adaptive compensation without using a complex feedback loop. The proposed scheme also eliminates the conflict problem in traditional dual loop control, the speed limitation of comparator, and all the additional circuits in the servo loop. The proposed adaptive bias equalizer is able to transmit 22Gb/s data for a cable loss of 7dB, 9dB, and 11dB at 11GHz, where the peak-to-peak jitter is about 9ps, 11ps and 23ps, respectively.
ABSTRACT ii
摘要 iii
CONTENTS iv
LIST OF FIGURES vi
Chapter I Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 1
Chapter II Concepts Explanation and Techniques Review of Equalizer 3
2.1 Overview of Wireline Communication 3
2.2 Overview of Equalizer 4
2.3 Basic Concept of Equalizer 5
2.3.1 Jitter 5
2.3.2 Eye Diagram 7
2.4 Design Techniques of High Speed Equalizers 8
2.4.1 Resistive/Capacitive Degeneration [4] 8
2.4.2 Inductive Peaking Technique [5] 10
2.5 Coaxial Cable Characteristic 12
2.6 Brief Summary 12
Chapter III Design of Ultra-Low-Power Miniature 20Gb/s Passive/Active Hybrid Equalizer 14
3.1 Design Considerations 14
3.1.1 Passive Equalizer 14
3.1.2 Active Inductors 16
3.1.3 Three Dimensional Inductors 20
3.1.4 Comprehensive Evaluation 23
3.2 Circuit Topology 24
3.2.1 Passive Filtering Stage 25
3.2.2 Tunable Active Equalizing Stage 29
3.2.3 Output Buffer 34
3.2.4 Overall Schematic 35
3.3 Simulation and Measurement Results 36
3.3.1 Layout 36
3.3.3 Frequency Response 37
3.3.2 Eye Diagram 38
3.4 Summary 40
Chapter IV Design of Novel 20Gb/s Adaptive Bias Equalizer 41
4.1 Design Considerations 41
4.1.1 Adaptive Loop Control 41
4.1.2 Adaptive Bias Technique 45
4.1.3 Comprehensive Evaluation 46
4.2 Circuit Topology 46
4.2.1 Active Equalizing Stage 47
4.2.2 Adaptive Bias Control Circuit 49
4.2.3 Overall Schematic 50
4.3 Simulation and Measurement Results 51
4.3.1 Layout 51
4.3.3 Frequency Response 52
4.3.2 Eye Diagram 53
4.4 Summary 56
Chapter V Conclusion and Future Work 57
5.1 Conclusion 57
5.2 Future Work and Recommendation 57
References 58
[1] W. J. Dally and J. Poulton, "Transmitter equalization for 4-Gbps signaling," Micro IEEE , vol. 17, no.1, pp. 48-56, Jan. 1997.

[2] J. N. Babanezhad, "A 3.3 V analog adaptive line-equalizer for fast Ethernet data communication," in Proc. IEEE Custom Integrated Circuits Conference, May 1998, pp.343-346.

[3] J. S. Choi, M. S. Hwang and D. K. Jeong, "A 0.18-μm CMOS 3.5-gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method," IEEE J. Solid-State Circuits, vol. 39, no. 3, pp .419-425, Mar. 2004.

[4] S. Gondi and B. Razavi, "Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers," IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1999-2011, Sept. 2007.

[5] J. Lee, "A 20-Gb/s Adaptive Equalizer in 0.13-μm CMOS Technology," IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2058-2066, Sept. 2006.

[6] R. Farjad-Rad, H. T. Ng, M. J. E. Lee, R. Senthinathan, W. J. Dally, A. Nguyen, R. Rathi, J. Poulton, J. Edmondson, J. Tran and H. Yazdanmehr, "0.622-8.0 Gbps 150 mW serial IO macrocell with fully flexible preemphasis and equalization," in IEEE Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp. 63-66.

[7] J. T. Stonick, G. Y. Wei, J. L. Sonntag and D. K. Weinlader, "An adaptive PAM-4 5-Gb/s backplane transceiver in 0.25-μm CMOS," IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 436-443, Mar. 2003.

[8] R. Sun, J. Park, F. O'Mahony and C. P. Yue, "A Tunable Passive Filter for Low-Power High-Speed Equalizers," in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2006, pp. 198.

[9] J. H. Lu, C. L. Luo and S. I. Liu, "A passive filter for 10-Gb/s analog equalizer in 0.18-μm CMOS technology," in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 404-407.

[10] D. H. Shin, J. E. Jang, F. O'Mahony and C.P. Yue, "A 1-mW 12-Gb/s continuous-time adaptive passive equalizer in 90-nm CMOS," in Proc. IEEE Custom Integrated Circuits Conference, Sept. 2009, pp.117-120.

[11] J. W. Moon and W. Y. Choi, "An 8-Gb/s Inductorless Adaptive Passive Equalizer in 0.18-μm CMOS Technology," J. Semiconductor Technology and Science, pp. 405-410, 2012.

[12] M. Shin, M. Kim, J. Kim, J. Kim and S. Ahn, "Small-Size Low-Cost Wideband Continuous-Time Linear Passive Equalizer With an Embedded Cavity Structure on a High-Speed Digital Channel," IEEE Trans. Components, Packaging and Manufacturing Technology, vol. 4, no. 1, pp. 94-99, Jan. 2014.

[13] S. Hara, T. Tokumitsu, T. Tanaka and M. Aikawa, "Broad-band monolithic microwave active inductor and its application to miniaturized wide-band amplifiers," IEEE Trans. Microwave Theory Tech., vol. 36, no. 12, pp. 1920-1924, Dec. 1988.

[14] W. Z. Chen and C. H. Lu, "A 2.5 Gbps CMOS optical receiver analog front-end," in Proc. IEEE Custom Integrated Circuits Conference, 2002, pp. 359-362.

[15] E. Sackinger and W. C. Fischer, "A 3-GHz 32-dB CMOS limiting amplifier for SONET OC-48 receivers," IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1884-1888, Dec. 2000.

[16] C. H. Wu, J. W. Liao and S. I. Liu, "A 1V 4.2mW fully integrated 2.5Gb/s CMOS limiting amplifier using folded active inductors," in Proc. International Symposium on Circuits and Systems, May 2004, pp. I-1044-7.

[17] B. Razavi, "RF Microelectronics".

[18] A. Zolfaghari, A. Chan and B. Razavi, "Stacked inductors and transformers in CMOS technology," IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.

[19] C. C. Tang, C. H. Wu and S. I. Liu, "Miniature 3-D inductors in standard CMOS process," IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 471-480, Apr. 2002.

[20] Y. S. Noh and C. S. Park, "An intelligent power amplifier MMIC using a new adaptive bias control circuit for W-CDMA applications," IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 967-970, Jun. 2004.

[21] Y. Tomita, M. Kibune, J. Ogawa, W. W. Walker, H. Tamura and T. Kuroda, "A 10-Gb/s receiver with series equalizer and on-chip ISI monitor in 0.11-μm CMOS," IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 986-993, Apr. 2005.

[22] S. A. Ibrahim and B. Razavi, "A 20Gb/s 40mW equalizer in 90nm CMOS technology," in Proc. Solid-State Circuits Conf. Feb. 2010, pp. 170-171.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *