帳號:guest(3.138.116.1)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃家傑
作者(外文):Huang, Jia Jie (a) Tun Kyaw
論文名稱(中文):閘極重疊結構之鍺源穿隧電晶體
論文名稱(外文):Ge Source Tunnel Field-Effect Transistors with Gate Overlap Structures
指導教授(中文):連振炘
施君興
指導教授(外文):Lien, Chenhsin
Shih, Chun-Hsing
口試委員(中文):邱福千
口試委員(外文):Chiu, Fu-Chien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063401
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:102
中文關鍵詞:鍺源閘極重疊結構次臨限擺幅對帶穿透效應低帶隙材料穿隧電晶體
外文關鍵詞:Germanium SourceGate Overlap StructuresSubthreshold SwingBand-to-band TunnelingLow Bandgap MaterialTunnel Field-Effect Transistors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:141
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
矽電晶體的發明帶來了電子行業的巨大成功,為了得到更多的電路密度和低功率操作,晶體體的尺寸以按比例縮小。然而,驅動電晶體的電源電壓(VDD)並未按電晶體密度比例縮小,其根本原因在於MOSFET臨界電壓 (VTH)的和次臨限擺幅(Subthreshold Swing, S)的限制。因MOSFET被次臨限擺幅的限制,才需要不同的承載機構來改變陡次臨限擺幅的限制。更陡次臨限擺幅允許較低的電源電壓(VDD)和低功率操作,因為電力尺度是電源電壓(VDD)的平方。具有更陡次臨限擺幅的元件表現較低的柵極電壓(Gate Voltage)和展現更高的開關電流比例(ION/IOFF)。所以當今技術的主流是更高的ON電流、低的OFF電流和較低的電源電壓。
為了克服MOSFET的次臨限擺幅(S)限制,需要具有不同的載流子注入機制的新開關元件。在這項實驗中,探索了穿隧場效電晶體(TFET)作為替代開關裝置,以克服CMOS中的次臨限擺幅(S)的基本限制。穿隧場效電晶體(TFET)以帶對帶穿透效應(BTBT)的方式將載流子注入,並具有無熱(kT)的依賴,這允許次臨限擺幅(S)更陡峭和其值小於60 mV/dec。
除了新元件和載流子注入機制外,本實驗採用低帶隙材料(Low Bandgap Material),鍺(Ge)作為源區的材料,主要為了大大提高ON電流和ON/OFF 比例。除了鍺源區材料外,本實驗採用閘極重疊結構(Gate Overlap Structures)以改變穿隧方式(由點變線穿隧)來得到從元極到通道的更多穿隧道區(Tunneling Area)。在這項實驗中,為了提高帶對帶穿透效應(BTBT)、ON電流和ON/OFF 比例,應用了不同條件的實驗:3~5 nm的閘極氧化層(Gate Oxide)厚度、10~20 nm的間隔(Spacer)厚度、15~45 sccm的摻雜流量(Doping Flows)、1E15~5E15 cm-2 的摻雜濃度(Doping Concentrations)。
本實驗中量測到的ID-VG或計算到的次臨限擺幅(S)值,可以結論說,閘極氧化層越薄或間隔厚度越薄或摻雜流量越高會得到更高的ON電流、更陡峭的次臨限擺幅。隨著更高的汲極電壓(VD),量測到的ON電流也會更高。對有和無閘極重疊結構而言,有閘極重疊結構的次臨限擺幅值小於60 mV/dec,但無極重疊結構的次臨限擺幅值大於60 mV/dec。對ON電流而言,有閘極重疊結構比無閘極重疊結構多2個orders的電流且它們的ON/OFF比例為2個orders。
ABSTRACT

The invention of Silicon transistor brings the electronic industry to the great success. In order to get more circuit density and operate at low power, the dimension of transistors goes to be scaled down. However, the supply voltage (VDD) used to drive the transistors has not proportionately scaled down with transistor density. The root cause is that the scaling down in VDD is attributed to the non-scalability of the MOSFET threshold voltage (VTH) and also the limitation of the subthreshold swing (S). As the limitation of subthreshold swing in MOSFET exists, there needs a new device with different carrier mechanism and steeper subthreshold swing are needed.
A steep subthreshold swing allows for lower supply voltage VDD and low power device operation because power scales is the square of VDD. Devices with steeper subthreshold swings behave less gate voltage and give out high ON to OFF currents ratio (ION/IOFF). Therefore, the mainstreams of nowadays technology are higher ION, lower IOFF and lower supply voltage.
To overcome the limitation of subthreshold swing in MOSFET, a new switch with dramatically different carrier injection mechanism needs to be explored. In this work, it explores the Tunnel Field-Effect Transistors (TFET) as an alternative switching device to overcome the fundamental limit of the subthreshold swing in CMOS. TFETs rely on carrier injection via Band-to-Band Tunneling (BTBT) and have the absence of thermal (kT) dependence, which allows for the subthreshold swing to be steeper and less than the value of 60 mV/dec.
Besides new devices and carrier injection mechanism, it will be shown that by employing low bandgap material, Germanium (Ge), only in the source region can be greatly enhanced ON current and ION/IOFF ratio. In addition to Ge source TFET, gate overlaps structure also used in this work to change types of tunneling, from point to line tunneling, in order to have more tunneling area from source to channel. Furthermore, different gate oxide thickness (3~5 nm), spacer thickness (10~20 nm), doping flows (15~45 sccm) and doping concentrations (1E15~5E15 cm-2) are applied in this work to improve Band-to-Band tunneling which induced to higher ON current and ION/IOFF ratio.
From the measured ID-VG or calculated subthreshold swing results of this experimental work, it can conclude that thinner in gate oxide or spacer thickness or high flow rates in doping will result higher ON current and steeper the subthreshold swing. With higher drain voltage, their measured ON current will also be higher. For W/I and W/O gate overlap, the subthreshold swing value with W/I overlap has under 60 mV/dec whereas in W/O overlap has over 60 mV/dec. For ON current, W/I overlap has higher 2 orders than W/O overlap and their ION/IOFF ratio is about 6 orders.
Abstract …………………………………………………………………………… I
摘要 ………………………………………………………………………… III
Acknowledgements …………………………………………………… IV
Table of Contents ………………………………………………… VII
Lists of Figures ………………………………………………… X
Lists of Tables ………………………………………………… XVI
Lists of Symbols ………………………………………………… XVII


CHAPTER 1 MOTIVATION FOR TFET RESEARCH ………… 1
1.1 Introduction ………………………………………… 1
1.2 Power Crisis of CMOS Technology ……… 2
1.3 Requirements for a New Switch …………… 6
1.4 Advantages of TFET Compared to Conventional MOSFET …………………………………………………………………………………………………… 7
1.5 The Proposed Solution to Overcome the Subthreshold Swing …………………………………………………………………………… 8
1.6 Thesis Overview …………………………………………………… 9
References ………………………………………………………… 11


CHAPTER 2 TFET WITH BAND-TO-BAND TUNNELING …… 13
2.1 Introduction ………………………………………………………………… 13
2.2 MOSFET vs. TFET …………………………………………………………… 14
2.2.1 MOSFET Operation ……………………………………………… 15
2.2.2 TFET Operation ……………………………………………… 17
2.3 Device Structure ……………………………………………………… 19
2.4 Working Principle ……………………………………………………… 21
2.5 Energy Band Diagram ………………………………………………… 23
2.6 The Advantages and Disadvantages …………………… 25
2.7 Introduction to Quantum Tunneling ………………… 26
2.7.1 Theory of Tunneling ………………………………… 28
2.7.2 Band-To-Band Tunneling (BTBT) in Diodes ……………… 29
2.8 Lateral and Vertical Tunneling …………………………… 33
2.8.1 Lateral Tunneling ……………………………………… 33
2.8.2 Vertical Tunneling ……………………………………… 34
References …………………………………………………………………………………… 36


CHAPTER 3 PLANAR GERMANIUM SOURCE TFET ………… 44
3.1 Introduction ………………………………………………………………… 44
3.2 The Device Structure and Fundamentals of Ge Source TFET ………………………………………………………………………………………… 44
3.2.1 Impacts of Ge Source on ION / IOFF ……………………………………………………………………………………………………………………… 44
3.2.2 The Operation Principle of Ge Source TFET ……………………………………………………………………………………………………………………… 47
3.2.3 The Advantages of Ge-Source TFET in Comparison with MOSFET …………………………………………………………………… 49
References ………………………………………………………………………………… 50


CHAPTER 4 FABRICATION OF EXPERIMENTAL DEVICE ………………… 52
4.1 Introduction ………………………………………………………………… 52
4.2 Mask Layouts ………………………………………………………………… 52
4.2.1 Device Masks ………………………………………… 52
4.2.2 Test-keys Masks ………………………………………… 55
(A) Contact Resistances …………………………… 55
(B) Channel Conductivity …………………………… 57
(C) Quality of Gate Oxide ………………………… 59
4.3 Experimental Devices …………………………………… 60
4.3.1 Device Parameters and Structures ……… 61
4.3.2 Scaling of Gate Lengths and Widths … 63
4.3.3 Reasons to Split Conditions …………………… 64
4.4 Process Fabrication ……………………………………………………… 68
4.4.1 Overall View in Process Block Diagrams …… 68
4.4.2 Process Flow in Cross Section Views ……… 70
References ……………………………………………………………………………… 84


CHAPTER 5 RESULTS AND DISCUSSIONS …………………………… 85
5.1 Gate Oxide Thickness and Source Materials …… 85
5.2 Spacer Thickness …………………………………………………… 88
5.3 Doping Flow Rates …………………………………………………… 92
5.4 Doping Concentrations ……………………………………………… 95
5.5 With and Without Gate Overlap ………………………… 98


CHAPTER 6 CONCLUSIONS ………………………………………………… 100
6.1 Conclusions of Experiment ……………………………………… 100
6.2 Future Directions of Research …………………………… 101
References …………………………………………………………………………………… 102
REFERENCES:

[1] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions”, IEEE Journal of Solid-State Circuits, vol. 9, pp. 256–268, 1974.

[2] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors”, Electron Devices Meeting, 2003. IEDM '03 Technical Digest, pp. 11.6.1-11.6.3, IEEE International, 2003.

[3] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. Mclntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, “A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging”, Electron Devices Meeting, IEDM 2007. IEEE International, pp. 247-250, 2007.

[4] Chenming Hu, “Green transistor as a solution to the IC power crisis”, Solid-State and Integrated-Circuit Technology, ICSICT 2008. 9th International Conference on 2008, pp. 16-20, 2008.

[5] Intel® Processors – Specifications: (Available online at: http://ark.intel.com/ )

[6] P. Packan, “Device and Circuit Interactions”, IEEE International Electron Device Meeting (IEDM '07) Short Course: Performance Boosters for Advanced CMOS Devices, December 2007.

[7] B. Meyerson, Semico Impact Conference, Taiwan, January 2004.

[8] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices”, Hoboken, New Jersey: Wiley, pp. 315, 2007.

[9] C. C. Hu, “Modern Semiconductor Devices for Integrated Circuits”, Upper Saddle River, New Jersey: Prentice Hall, pp. 281-283, 2010.

[10] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The Landscape of Parallel Computing Research: A View from Berkeley,” Technical Report No. UCB/EECS-2006-183, Electrical Engineering and Computer Sciences, University of California, Berkeley, December 2006.

[11] E. Alon, “Circuit and System Driven Requirements for Digital Logic Devices,” 2nd Berkeley Symposium on Energy Efficient Electronic Systems, Berkeley, California, 2011.

[12] J. Appenzeller, J. Knoch, M.T. Bjork, H. Riel, H. Schmid, and W. Riess, “Toward Nanowire Electronics”, IEEE Transactions on Electron Devices, vol. 55, pp. 2827-2845, 2008.

[13] S. Jin, M.V. Fischetti, and E. Lyumkis, “Nonlocal band-to-band tunneling model for multidimensional device simulators”, Journal of Applied Physics, 2009.

[14] S. H. Kim, H. Kam, C. Hu, and T.-J. K. Liu, “Ge-Source Tunnel Field Effect Transistors with Record High ION/IOFF,” VLSI Symposium Technical Digest, pp. 178–179, 2009.

REFERENCES:

[1] D.Behammer, M. Zeuner, T. Hackbarth, et al., “Comparison of lateral and vertical Si MOSFETs with ultra-short channels”, Thin Solid Films, 336, pp. 313, 1998.

[2] Y. Ma, Zh. Li, L. Liu, et al., “Effective density of states approach to QM correction in MOS structures”, Solid State Elec. 44, pp. 401-407, 2000.

[3] O. Renault, D. Samour, D. Rouchon, et al., “Interface properties of ultra-thin HFO2 films grown by atomic layer deposition on SiO2 / Si”, Thin Solid Films, 428 (1-2), pp. 190-194, 2003.

[4] G. Lucovsky, H. Yang, Y. Wu and H. Niimi, “Plasma processed ultra-thin SiO2 interfaces for advanced silicon NMOS and PMOS devices: applications to Si-Oxide / Si-Oxynitride, Si-Oxide / Si nitride and Si-Oxide / transition and metal oxide stacked gate dielectrics”, Thin Solid Films, 374 (2), pp. 217-227, 2000.

[5] R. Perera, A. Ikeda, R. Hattori and Y. Kuroki, “Effects of post annealing on removal of defect states in silicon oxynitride films grown by oxidation of silicon substrates nitride in inductively coupled nitrogen plasma”, Thin Solid Films, 423 (2), pp. 212-217, 2003.

[6] D. H. Ko, N. I. Lee, Y. W. Kim and M. Y. Lee, “Gate oxide integrity in metal oxide semiconductor structures with Ti-Polycide gates for ULSI applications”, Thin Solid Films, 326 (1-2), pp. 56-59, 1998.

[7] “International Technology Roadmap for Semiconductors 2013 Update”, 2013.

[8] J. P. Xu, P. T. Lai, L. Huang, H. B. Lo and Y. C. Cheng, “Greatly suppressed stress induced shift of GIDL in N2O-based NMOSFETs”, Solid State Electronics, 42 (9), pp. 1665-1669, 1998.

[9] Th. Schulz, W. Rosner, L. Risch, et al., “50 nm Vertical Sidewall Transistors with High Channel Doping Concentrations”, pp. 61-64, IEDM 2000.

[10] L. Chang, S. Tang, T. J. King, J. Bokor, and Ch. Hu, “Gate Length Scaling and Threshold Voltage Control of Double Gate MOSFETs”, pp. 719-22, IEDM 2000.

[11] A. T. Tilke, F. C. Simmel, R. H. Blick, H. Lorenz, J. P. Kotthaus, “Coulomb blockade in silicon nanostructures”, Progress in Quantum Electronics, 25, pp. 97-138, 2001.

[12] R. J. Huang, H. Pothier, J. Weis, et al., “Single electron transistors realized in in-plane-gate and top-gate technology”, Solid State Electronics, 37 (4-6), pp. 995-999, 1994.

[13] W. Hansch, C. Fink, J. Schulze, I. Eisele, “A vertical MOS-gated Esaki tunneling transistor in silicon”, Thin Solid Films, 369, pp. 387-389, 2000.

[14] J. Schulze, C. Fink, T. Sulima, Eisele, W. Hansch, “Vertical MOS-gated pin-diodes: MOS-gated tunneling transistors in Si 100 and Si 111”, Thin Solid Films, 380, pp. 154-157, 2000.

[15] W. Hansch, P. Borthen, J. Schulze, C. Fink, T. Sulima and I. Eisele, “Performance improvements in vertical surface tunneling transistors”, Jpn. J. Appl. Phys, 40, pp. 3131-3136, 2001.

[16] S. Sedlmaier, J. Schulze, T. Sulima, C. Fink, C. Tolksdorf, A. Bayerstadler, I. Eisele, P. F. Wang, K. Hilsenbeck, W. Hansch, “Phonon assisted tunneling in gated p-i-n diodes”, Materials Science and Engineering, B89, pp. 116-119, 2002.

[17] P. F. Wang, Th. Nirschl, D. Schmitt-Landsiedel, W. Hansch, “Simulation of the Esaki tunneling FET”, Solid State Electronics, 47, pp. 1187-1192, 2003.

[18] W. M. Reddick and G. A. J. Amaratunga, “Silicon Surface Tunnel Transistor,” Applied Physics Letter, Vol. 67, 1995, pp. 494-496.

[19] C. C. Hu, Modern Semiconductor Devices for Integrated Circuits, Upper Saddle River, New Jersey: Prentice Hall, 2010, pp. 213-217.

[20] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, New York: Cambridge University Press, pp. 164-165, 2009.

[21] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Hoboken, New Jersey: Wiley, pp.315, 2007.

[22] P. Packan, S. Akbar, M. Armstrong, D. Bergstrom, M. Brazier, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han, J. He, R. Heussner, R. James, J. Jopling, C. Kenyon, S-H. Lee, M. Liu, S. Lodha, B. Mattis, A. Murthy, L. Neiberg, J. Neirynck, S. Pae, C. Parker, L. Pipes,J. Sebastian, J. Seiple, B. Sell, A. Sharma, S. Sivakumar, B. Song, A. St. Amour, K. Tone, T.Troeger, C. Weber, K. Zhang, Y. Luo, S. Natarajan, “High Performance 32nm Logic Technology Featuring 2nd Generation High-k + Metal Gate Transistors,” IEEE International Electron Device Meeting, pp. 659-662, 2009.

[23] H.-J. Cho, K.-I.Seo, W.C. Jeong, Y.-H. Kim, Y.D. Lim, W.W. Jang, J.G. Hong, S.D. Suk, M. Li, C. Ryou, H.S. Rhee, J.G. Lee, H.S. Kang, Y.S. Son, C.L. Cheng, S.H. Hong, W.S. Yang, S.W. Nam, J.H. Ahn, D.H. Lee, S. Park, M. Sadaaki, D.H. Cha, D.W. Kim, S.P. Sim, S. Hyun, C.G. Koh, B.C. Lee, S.G. Lee, M.C. Kim, Y.K. Bae, B. Yoon, S.B. Kang, J.S. Hong, S. Choi, D.K. Sohn, J. S. Yoon and C. Chung, “Bulk Planar 20nm High-K/Metal Gate CMOS Technology Platform for Low Power and High Performance Applications,” IEEE International Electron Device Meeting, pp. 350-353, 2011.

[24] C. Le Royer, A. Villalon, M. Cassé, D. Cooper, J. Mazurier, B. Prévitali, C. Tabone, P. Perreau, J.-M. Hartmann, P. Scheiblin, F. Allain, F. Andrieu, O. Weber, P. Batude, O. Faynotand T. Poiroux, “First Demonstration of Ultrathin Body c-SiGe Channel FDSOI p MOSFETs Combined with SiGe(:B) RSD: Drastic Improvement of Electrostatics (VT, p tuning, DIBL) and Transport (μ0, Isat) Properties Down to 23nm Gate Length,” IEEE International Electron Device Meeting, pp. 394-397, 2011.

[25] Sung Hwan Kim, “Germanium Source Tunnel Field Effect Transistor for Ultra-Low Power Digital Logic”, Ph.D Thesis Report, USA, May 2012.

[26] E. O. Kane, “Zener Tunneling in Semiconductors,” Journal of Physics and Chemistry of Solids, Vol. 12, pp. 181, 1959.

[27] E. O. Kane, “Theory of tunneling,” Journal of Applied Physics, Vol. 32, pp. 83, 1961.

[28] J. L. Moll, “Physics of Semiconductors”, New York: McGraw-Hill, pp. 249-253, 1964.

[29] J. Knoch, S. Mantl, and J. Appenzeller, “Impact of Dimensionality on the Performance of Tunneling FETs: Bulk Versus One-Dimensional Devices,” Solid-State Electronics, Vol. 52, pp.572-578, 2007.

[30] A. M. Ionescu and H. Riel, “Tunnel Field-Effect Transistors as Energy Efficient Electronic Switches,” Nature, Vol. 497, pp. 329-337, 2011.

[31] S. H. Kim, Z. A. Jacobson, and T.-J. K. Liu, “Impact of Body Doping and Thickness on the Performance of Germanium-Source TFETs,” IEEE Transaction on Electron Devices, Vol. 57, No. 7, pp. 1710–1713, Jul. 2010.

[32] Adrian M. Ionescu & Heike Riel, “Tunnel field-effect transistors as energy-efficient electronic switches” , Science Nature vol.479, pp.329–337, Nov 2011.
(Available online at: http://www.nature.com/nature/journal/v479/n7373/fig_tab/nature10679_F2.html )

[33] R. Booth, M. White, H. Wong, and T. Krutsick, “The effect of channel implants on MOS transistor characterization,” IEEE Trans. Elec. Dev., Vol. ED-34, no. 12, pp. 2501-2509, 1987.

[34] Woo Yong Choi, “Comparative Study of Tunneling Field Effect Transistor and Metal Oxide Semiconductor Field Effect Transistors”, Japanese journal of Applied Physics, Vol.49, Issue 4, pp.04DJ12- 04DJ12-3, 2010.

[35] Joachim Knoch, “Optimizing Tunnel FET performance: Impact of device structure, transistor dimensions and choice of material”, International Symposium on VLSI Technology Systems and Applications, VLSI-TSA 2009.

[36] Christian Philipp Sandow, “Modeling, Fabrication and Characterization of Silicon Tunnel Field Effect Transistor”, Ph.D. Thesis Report, RWTH Aachen, Germany, Jun 2010.
(Available online at: http://darwin.bth.rwth-aachen.de/opus3/volltexte/2011/3453/pdf/3453.pdf)

[37] Aswathy M, Nitha M Biju, Rama Komaragiri, “Simulation Studies of a Tunnel Field Effect Transistor (TFET)”, IEEE Transaction on Electron Devices, 2012 International Conference on Advances in Computing and Communications, pp. 138-141, 2012.

[38] Peng-Fei Wang, “Complementary Tunneling-FETs (CTEFET) in CMOS Technology”, Ph.D. Thesis Report, Germany, pp. 1-4, Nov 2003.

[39] J. W. Slotboom, “The PN product in Silicon”, Solid State Electronics, 20, pp. 279-283, 1977.

[40] J.L. Egley and D. Chidambarrao, “Strain Effects on Device Characteristics: Implementation in Drift-Diffusion Simulators”, Solid State Electronics, 36 (12), pp. 1653-1664, 1993.

[41] Peng-Fei Wang, “Complementary Tunneling-FETs (CTEFET) in CMOS Technology”, Ph.D. Thesis Report, Germany, pp. 11-13, Nov 2003.

[42] A. Karalis, J. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer”, Annals of Physics, Vol. 323, pp. 34-48, Jan 2008.

[43] Rahim Esfandyarpour, “Tunneling Field Effect Transistors”, PH250 course report, U.S.A, pp. 1-6, June 2012.
(Available online at: http://large.stanford.edu/courses/2012/ph250/esfandyarpour1/ )

[44] E. O. Kane, “Theory of Tunneling,” J. Appl. Phys. vol. 32, no. 1, pp. 83-91, Jan. 1961.

[45] L.V. Keldysh, Sov. Phys. JETP, vol. 6, pp. 665, 1958.

[46] L.V. Keldysh, “Behaviour of Non-Metallic Crystals in Strong Electric Fields,” Sov. Phys. JETP, vol. 6, pp. 763-770, 1958.

[47] IOFF e Physical Technical Institute, “Physical Properties of Semiconductors.”

[48] James Towfik Teherani, “Band-to-band Tunneling in Silicon Diodes and Tunnel Transistors”, M.Sc. Thesis Report, U.S.A, pp. 17-29, June 2010.

[49] N. Holonyak, I.A. Lesk, R.N. Hall, J.J. Tiemann, and H. Ehrenreich, “Direct Observation of Phonons During Tunneling in Narrow Junction Diodes”, Physical Review Letters, Vol. 3, pp. 167, 1959.

[50] W. G. Vandenberghe, A. S. Verhulst, G. Groeseneken, B. Soree, and W. Magnus, “Analytical Model for Point and Line Tunneling in a Tunnel Field Effect Transistor”, Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, pp. 137-140, Sep 2008.

[51] E. H. Toh, G. H. Wang, G. Samudra, and Y. C. Yeo, “Device Physics and Design of Germanium Tunneling Field Effect Transistor with Source and Drain Engineering for Low Power and High Performance Applications”, Journal of Applied Physics, Vol. 103, No. 10, pp. 104504-1 – 104504-5, May 2008.

[52] O. M. Nayfeh, C. N. Chleirigh, J. Hennessy, L. Gomez, J. L. Hoyt, and D. A. Antoniadis, “Design of Tunneling Field Effect Transistors Using Strained-Silicon / Strained-Germanium Type-II Staggered Heterojunctions”, IEEE Electron Device Letters, Vol. 29, No. 9, pp. 1074-1077, Sep 2008.

[53] C. Sandow, J. Knoch, C. Urban, Q-T. Zhao, and S. Mantl, “Impact of Electrostatics and Doping Concentration on the Performance of Silicon Tunnel Field Effect Transistors”, Solid State Electronics, Vol. 53, pp. 1126-1129, 2009.

[54] P-F. Wang, T. Nirschl, D. Schmitt-Landsiedel, and W. Hansch, “Simulation of Esaki Tunneling FET”, Solid State Electronics, Vol. 47, pp. 1187-1192, 2003.

[55] Q. Zhang, S. Sutar, T. Ksel, and A. Seabaugh, “Fully Depleted GeInterband Tunnel Transistor: Modeling and Junction Formation”, Solid State Electronics, Vol. 53, No.1, pp. 30-35, Jan 2008.

[56] G. Han, P. Guo, Y. Yang, L. Fan, Y. S. Yee, C. Zhan, and Y-C Yeo, “Source Engineering for Tunnel Field Effect Transistor: Elevated Source with Vertical Silicon-Germanium / Germanium Heterostructure”, Japanese Journal of Applied Physics, Vol. 50, No. 4, pp. 04DJ07-04DJ07-4, 2011.

[57] T. Y. Chan, J. Chen, P. K. Ko, and C. Hu, “The Impact of Gate-Drain Leakage Current on MOSFET Scaling”, IEEE International Electron Device Meeting 2011, pp. 718, 1987.

[58] S. H. Kim, Z. A. Jacobson, and T-J. K. Liu, “Impact of Body Doping and Thickness on the Performance of Germanium-Source TEFETs”, IEEE Transaction on Electron Devices, Vol. 57, No.7, pp. 1710-1713, Jul 2010.

[59] S. H. Kim, S. Agarwal, Z. A. Jacobson, P. Matheu, C. Hu and T-J. K. Liu, “Tunnel Field Effect Transistor with Raised Germanium Source”, IEEE Electron Device Letters, Vol. 31, No. 10, pp. 1107-1109, Oct 2010.

[60] Z. A. Jacobson, S. H. Kim, P. Matheu, and T-J. K. Liu, “Source Design Optimization for the Planar Ge-Source n Channel TFET”, submitted to Solid State Electronics, 2011.

[61] P. Packan, S. Akbar, M. Armstrong, D. Bergstrom, M. Brazier, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han, J. He, R. Heussner, R. James, J. Jopling, C. Kenyon, S-H. Lee, M. Liu, S. Lodha, B. Mattis, A. Murthy, L. Neiberg, J. Neirynck, S. Pae, C. Parker, L. Pipes, J. Sebastian, J. Seiple,B. Sell, A. Sharma, S. Natarajan, “High Performance 32 nm Logic Technology Featuring 2nd Generation High-K + Metal Gate Transistors”, IEEE International Electron Device Meeting, pp. 659-662, 2009.

REFERENCES:

[1] S. H. Kim, H. Kam, C. Hu, and T.-J. K. Liu, “Ge-Source Tunnel Field Effect Transistors with Record High ION/IOFF,” VLSI Symposium Technical Digest, pp. 178–179, 2009.

[2] S. H. Kim, Z. A. Jacobson, and T.-J. K. Liu, “Impact of Body Doping and Thickness on the Performance of Germanium-Source TFETs,” IEEE Transaction on Electron Devices, Vol. 57, No. 7, pp. 1710–1713, Jul. 2010.

[3] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling Field-Effect Transistors (TFETs) with Subthreshold Swing (SS) Less Than 60 mV/dec,” IEEE Electron Device Letters, Vol. 28, No. 8, pp. 743–745, Aug. 2007.

[4] E.-H. Toh, G. H. Wang, G. Samudra, and Y.-C. Yeo, “Device Physics and Design of Germanium Tunneling Field-Effect Transistor with Source and Drain Engineering for Low Power and High Performance Applications,” Journal of Applied Physics, Vol. 103, No. 10, pp. 104504-1 - 104504-5, May 2008.

[5] N. Patel, A. Ramesha, and S. Mahapatra, “Drive Current Boosting of n-Type Tunnel FET with Strained SiGe Layer at Source,” Microelectronics Journal, Vol. 39, No. 12, Dec. 2008.

[6] E. O. Kane, “Zener Tunneling in Semiconductors,” Journal of Physics and Chemistry of Solids, Vol. 12, pp. 181, 1959.

[7] E. O. Kane, “Theory of tunneling,” Journal of Applied Physics, Vol. 32, pp. 83, 1961.

[8] J. L. Moll, Physics of Semiconductors. New York: McGraw-Hill, pp. 249-253, 1964.

[9] P. N. Butcher, K. F. Hulme, and J. R. Morgan, “Dependence of Peak Current Density on Acceptor Concentration in Germanium Tunnel Diodes,” Solid-State Electronics, Vol. 5, No. 5, pp. 358, 1962.

[10] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Hoboken, New Jersey: Wiley, pp. 90-98, 2007.

[11] W. G. Vandenberghe, A. S. Verhulst, G. Groeseneken, B. Sorée, and W. Magnus, “Analytical Model for Point and Line Tunneling in a Tunnel Field-Effect Transistor,” Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, pp. 137-140, Sep. 2008.

[12] R. F. Pierret, Semiconductor Device Fundamentals, Reading, Massachusetts: Addison- Wesley, pp. 597, 1996.

[13] International Technology Roadmap for Semiconductors (ITRS), 2007.
(Available online at: http://public.itrs.net )

REFERENCES:

[1] Positive and Negative Photoresist,
(Available online at: http://www.ece.gatech.edu/research/labs/vc/theory/PosNegRes.html )

[2] N. Stavitski, J.H. Klootwijk, H.W. van Zeijl, B.K. Boksteen, A.Y. Kovalgin, R.A.M. Wolters, “Cross-Bridge Kelvin Resistor (CBKR) Structures for Measurement of Low Contact Resistances,” Microelectronic Test Structures, ICMTS 2008, pp. 551–554, 2008.

[3] D. K. Schroder, “Semiconductor Material and Device Characterization”, 3rd ed. New York: Wiley-Interscience, IEEE, 2006.

[4] Keithley Application Notes Series, “Gate Dielectric Capacitance-Voltage Characterization Using the Model 4200 Semiconductor Characterization System”, Keithley Model 4200-SCS, Number 2239.

[5] B.Van Zeghbroeck, “Principles of Semiconductor Devices”, Chapter 7 “MOS Field Effect Transistors”, Episode 7.7.9 “Scaling”, 2011.
(Available online at: http://ecee.colorado.edu/~bart/book/book/chapter7/ch7_7.htm )

[6] M. Zhang, J. Knoch, Q.T. Zhao, U. Breuer, S. Mantl, “Impact of dopant segregation on fully depleted Schottky-barrier SOI-MOSFETs”, Solid State Electronics, 2006.

[7] Hong Xiao, “Introduction to Semiconductor Manufacturing Technology”, Chapter 11 “Metallization”, pp. 452-462, 2005.

REFERENCES:
[1] S. H. Kim, S. Agarwal, Z. A. Jacobson, P. Matheu, C. Hu, and T.-J. K. Liu, “Tunnel Field Effect Transistor with Raised Germanium Source,” IEEE Electron Device Letters, Vol. 31, No.10, pp. 1107-1109, Oct 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *