|
REFERENCES:
[1] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions”, IEEE Journal of Solid-State Circuits, vol. 9, pp. 256–268, 1974.
[2] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors”, Electron Devices Meeting, 2003. IEDM '03 Technical Digest, pp. 11.6.1-11.6.3, IEEE International, 2003.
[3] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. Mclntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, “A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging”, Electron Devices Meeting, IEDM 2007. IEEE International, pp. 247-250, 2007.
[4] Chenming Hu, “Green transistor as a solution to the IC power crisis”, Solid-State and Integrated-Circuit Technology, ICSICT 2008. 9th International Conference on 2008, pp. 16-20, 2008.
[5] Intel® Processors – Specifications: (Available online at: http://ark.intel.com/ )
[6] P. Packan, “Device and Circuit Interactions”, IEEE International Electron Device Meeting (IEDM '07) Short Course: Performance Boosters for Advanced CMOS Devices, December 2007.
[7] B. Meyerson, Semico Impact Conference, Taiwan, January 2004.
[8] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices”, Hoboken, New Jersey: Wiley, pp. 315, 2007.
[9] C. C. Hu, “Modern Semiconductor Devices for Integrated Circuits”, Upper Saddle River, New Jersey: Prentice Hall, pp. 281-283, 2010.
[10] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The Landscape of Parallel Computing Research: A View from Berkeley,” Technical Report No. UCB/EECS-2006-183, Electrical Engineering and Computer Sciences, University of California, Berkeley, December 2006.
[11] E. Alon, “Circuit and System Driven Requirements for Digital Logic Devices,” 2nd Berkeley Symposium on Energy Efficient Electronic Systems, Berkeley, California, 2011.
[12] J. Appenzeller, J. Knoch, M.T. Bjork, H. Riel, H. Schmid, and W. Riess, “Toward Nanowire Electronics”, IEEE Transactions on Electron Devices, vol. 55, pp. 2827-2845, 2008.
[13] S. Jin, M.V. Fischetti, and E. Lyumkis, “Nonlocal band-to-band tunneling model for multidimensional device simulators”, Journal of Applied Physics, 2009.
[14] S. H. Kim, H. Kam, C. Hu, and T.-J. K. Liu, “Ge-Source Tunnel Field Effect Transistors with Record High ION/IOFF,” VLSI Symposium Technical Digest, pp. 178–179, 2009.
REFERENCES:
[1] D.Behammer, M. Zeuner, T. Hackbarth, et al., “Comparison of lateral and vertical Si MOSFETs with ultra-short channels”, Thin Solid Films, 336, pp. 313, 1998.
[2] Y. Ma, Zh. Li, L. Liu, et al., “Effective density of states approach to QM correction in MOS structures”, Solid State Elec. 44, pp. 401-407, 2000.
[3] O. Renault, D. Samour, D. Rouchon, et al., “Interface properties of ultra-thin HFO2 films grown by atomic layer deposition on SiO2 / Si”, Thin Solid Films, 428 (1-2), pp. 190-194, 2003.
[4] G. Lucovsky, H. Yang, Y. Wu and H. Niimi, “Plasma processed ultra-thin SiO2 interfaces for advanced silicon NMOS and PMOS devices: applications to Si-Oxide / Si-Oxynitride, Si-Oxide / Si nitride and Si-Oxide / transition and metal oxide stacked gate dielectrics”, Thin Solid Films, 374 (2), pp. 217-227, 2000.
[5] R. Perera, A. Ikeda, R. Hattori and Y. Kuroki, “Effects of post annealing on removal of defect states in silicon oxynitride films grown by oxidation of silicon substrates nitride in inductively coupled nitrogen plasma”, Thin Solid Films, 423 (2), pp. 212-217, 2003.
[6] D. H. Ko, N. I. Lee, Y. W. Kim and M. Y. Lee, “Gate oxide integrity in metal oxide semiconductor structures with Ti-Polycide gates for ULSI applications”, Thin Solid Films, 326 (1-2), pp. 56-59, 1998.
[7] “International Technology Roadmap for Semiconductors 2013 Update”, 2013.
[8] J. P. Xu, P. T. Lai, L. Huang, H. B. Lo and Y. C. Cheng, “Greatly suppressed stress induced shift of GIDL in N2O-based NMOSFETs”, Solid State Electronics, 42 (9), pp. 1665-1669, 1998.
[9] Th. Schulz, W. Rosner, L. Risch, et al., “50 nm Vertical Sidewall Transistors with High Channel Doping Concentrations”, pp. 61-64, IEDM 2000.
[10] L. Chang, S. Tang, T. J. King, J. Bokor, and Ch. Hu, “Gate Length Scaling and Threshold Voltage Control of Double Gate MOSFETs”, pp. 719-22, IEDM 2000.
[11] A. T. Tilke, F. C. Simmel, R. H. Blick, H. Lorenz, J. P. Kotthaus, “Coulomb blockade in silicon nanostructures”, Progress in Quantum Electronics, 25, pp. 97-138, 2001.
[12] R. J. Huang, H. Pothier, J. Weis, et al., “Single electron transistors realized in in-plane-gate and top-gate technology”, Solid State Electronics, 37 (4-6), pp. 995-999, 1994.
[13] W. Hansch, C. Fink, J. Schulze, I. Eisele, “A vertical MOS-gated Esaki tunneling transistor in silicon”, Thin Solid Films, 369, pp. 387-389, 2000.
[14] J. Schulze, C. Fink, T. Sulima, Eisele, W. Hansch, “Vertical MOS-gated pin-diodes: MOS-gated tunneling transistors in Si 100 and Si 111”, Thin Solid Films, 380, pp. 154-157, 2000.
[15] W. Hansch, P. Borthen, J. Schulze, C. Fink, T. Sulima and I. Eisele, “Performance improvements in vertical surface tunneling transistors”, Jpn. J. Appl. Phys, 40, pp. 3131-3136, 2001.
[16] S. Sedlmaier, J. Schulze, T. Sulima, C. Fink, C. Tolksdorf, A. Bayerstadler, I. Eisele, P. F. Wang, K. Hilsenbeck, W. Hansch, “Phonon assisted tunneling in gated p-i-n diodes”, Materials Science and Engineering, B89, pp. 116-119, 2002.
[17] P. F. Wang, Th. Nirschl, D. Schmitt-Landsiedel, W. Hansch, “Simulation of the Esaki tunneling FET”, Solid State Electronics, 47, pp. 1187-1192, 2003.
[18] W. M. Reddick and G. A. J. Amaratunga, “Silicon Surface Tunnel Transistor,” Applied Physics Letter, Vol. 67, 1995, pp. 494-496.
[19] C. C. Hu, Modern Semiconductor Devices for Integrated Circuits, Upper Saddle River, New Jersey: Prentice Hall, 2010, pp. 213-217.
[20] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, New York: Cambridge University Press, pp. 164-165, 2009.
[21] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Hoboken, New Jersey: Wiley, pp.315, 2007.
[22] P. Packan, S. Akbar, M. Armstrong, D. Bergstrom, M. Brazier, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han, J. He, R. Heussner, R. James, J. Jopling, C. Kenyon, S-H. Lee, M. Liu, S. Lodha, B. Mattis, A. Murthy, L. Neiberg, J. Neirynck, S. Pae, C. Parker, L. Pipes,J. Sebastian, J. Seiple, B. Sell, A. Sharma, S. Sivakumar, B. Song, A. St. Amour, K. Tone, T.Troeger, C. Weber, K. Zhang, Y. Luo, S. Natarajan, “High Performance 32nm Logic Technology Featuring 2nd Generation High-k + Metal Gate Transistors,” IEEE International Electron Device Meeting, pp. 659-662, 2009.
[23] H.-J. Cho, K.-I.Seo, W.C. Jeong, Y.-H. Kim, Y.D. Lim, W.W. Jang, J.G. Hong, S.D. Suk, M. Li, C. Ryou, H.S. Rhee, J.G. Lee, H.S. Kang, Y.S. Son, C.L. Cheng, S.H. Hong, W.S. Yang, S.W. Nam, J.H. Ahn, D.H. Lee, S. Park, M. Sadaaki, D.H. Cha, D.W. Kim, S.P. Sim, S. Hyun, C.G. Koh, B.C. Lee, S.G. Lee, M.C. Kim, Y.K. Bae, B. Yoon, S.B. Kang, J.S. Hong, S. Choi, D.K. Sohn, J. S. Yoon and C. Chung, “Bulk Planar 20nm High-K/Metal Gate CMOS Technology Platform for Low Power and High Performance Applications,” IEEE International Electron Device Meeting, pp. 350-353, 2011.
[24] C. Le Royer, A. Villalon, M. Cassé, D. Cooper, J. Mazurier, B. Prévitali, C. Tabone, P. Perreau, J.-M. Hartmann, P. Scheiblin, F. Allain, F. Andrieu, O. Weber, P. Batude, O. Faynotand T. Poiroux, “First Demonstration of Ultrathin Body c-SiGe Channel FDSOI p MOSFETs Combined with SiGe(:B) RSD: Drastic Improvement of Electrostatics (VT, p tuning, DIBL) and Transport (μ0, Isat) Properties Down to 23nm Gate Length,” IEEE International Electron Device Meeting, pp. 394-397, 2011.
[25] Sung Hwan Kim, “Germanium Source Tunnel Field Effect Transistor for Ultra-Low Power Digital Logic”, Ph.D Thesis Report, USA, May 2012.
[26] E. O. Kane, “Zener Tunneling in Semiconductors,” Journal of Physics and Chemistry of Solids, Vol. 12, pp. 181, 1959.
[27] E. O. Kane, “Theory of tunneling,” Journal of Applied Physics, Vol. 32, pp. 83, 1961.
[28] J. L. Moll, “Physics of Semiconductors”, New York: McGraw-Hill, pp. 249-253, 1964.
[29] J. Knoch, S. Mantl, and J. Appenzeller, “Impact of Dimensionality on the Performance of Tunneling FETs: Bulk Versus One-Dimensional Devices,” Solid-State Electronics, Vol. 52, pp.572-578, 2007.
[30] A. M. Ionescu and H. Riel, “Tunnel Field-Effect Transistors as Energy Efficient Electronic Switches,” Nature, Vol. 497, pp. 329-337, 2011.
[31] S. H. Kim, Z. A. Jacobson, and T.-J. K. Liu, “Impact of Body Doping and Thickness on the Performance of Germanium-Source TFETs,” IEEE Transaction on Electron Devices, Vol. 57, No. 7, pp. 1710–1713, Jul. 2010.
[32] Adrian M. Ionescu & Heike Riel, “Tunnel field-effect transistors as energy-efficient electronic switches” , Science Nature vol.479, pp.329–337, Nov 2011. (Available online at: http://www.nature.com/nature/journal/v479/n7373/fig_tab/nature10679_F2.html )
[33] R. Booth, M. White, H. Wong, and T. Krutsick, “The effect of channel implants on MOS transistor characterization,” IEEE Trans. Elec. Dev., Vol. ED-34, no. 12, pp. 2501-2509, 1987.
[34] Woo Yong Choi, “Comparative Study of Tunneling Field Effect Transistor and Metal Oxide Semiconductor Field Effect Transistors”, Japanese journal of Applied Physics, Vol.49, Issue 4, pp.04DJ12- 04DJ12-3, 2010.
[35] Joachim Knoch, “Optimizing Tunnel FET performance: Impact of device structure, transistor dimensions and choice of material”, International Symposium on VLSI Technology Systems and Applications, VLSI-TSA 2009.
[36] Christian Philipp Sandow, “Modeling, Fabrication and Characterization of Silicon Tunnel Field Effect Transistor”, Ph.D. Thesis Report, RWTH Aachen, Germany, Jun 2010. (Available online at: http://darwin.bth.rwth-aachen.de/opus3/volltexte/2011/3453/pdf/3453.pdf)
[37] Aswathy M, Nitha M Biju, Rama Komaragiri, “Simulation Studies of a Tunnel Field Effect Transistor (TFET)”, IEEE Transaction on Electron Devices, 2012 International Conference on Advances in Computing and Communications, pp. 138-141, 2012.
[38] Peng-Fei Wang, “Complementary Tunneling-FETs (CTEFET) in CMOS Technology”, Ph.D. Thesis Report, Germany, pp. 1-4, Nov 2003.
[39] J. W. Slotboom, “The PN product in Silicon”, Solid State Electronics, 20, pp. 279-283, 1977.
[40] J.L. Egley and D. Chidambarrao, “Strain Effects on Device Characteristics: Implementation in Drift-Diffusion Simulators”, Solid State Electronics, 36 (12), pp. 1653-1664, 1993.
[41] Peng-Fei Wang, “Complementary Tunneling-FETs (CTEFET) in CMOS Technology”, Ph.D. Thesis Report, Germany, pp. 11-13, Nov 2003.
[42] A. Karalis, J. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer”, Annals of Physics, Vol. 323, pp. 34-48, Jan 2008.
[43] Rahim Esfandyarpour, “Tunneling Field Effect Transistors”, PH250 course report, U.S.A, pp. 1-6, June 2012. (Available online at: http://large.stanford.edu/courses/2012/ph250/esfandyarpour1/ )
[44] E. O. Kane, “Theory of Tunneling,” J. Appl. Phys. vol. 32, no. 1, pp. 83-91, Jan. 1961.
[45] L.V. Keldysh, Sov. Phys. JETP, vol. 6, pp. 665, 1958.
[46] L.V. Keldysh, “Behaviour of Non-Metallic Crystals in Strong Electric Fields,” Sov. Phys. JETP, vol. 6, pp. 763-770, 1958.
[47] IOFF e Physical Technical Institute, “Physical Properties of Semiconductors.”
[48] James Towfik Teherani, “Band-to-band Tunneling in Silicon Diodes and Tunnel Transistors”, M.Sc. Thesis Report, U.S.A, pp. 17-29, June 2010.
[49] N. Holonyak, I.A. Lesk, R.N. Hall, J.J. Tiemann, and H. Ehrenreich, “Direct Observation of Phonons During Tunneling in Narrow Junction Diodes”, Physical Review Letters, Vol. 3, pp. 167, 1959.
[50] W. G. Vandenberghe, A. S. Verhulst, G. Groeseneken, B. Soree, and W. Magnus, “Analytical Model for Point and Line Tunneling in a Tunnel Field Effect Transistor”, Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, pp. 137-140, Sep 2008.
[51] E. H. Toh, G. H. Wang, G. Samudra, and Y. C. Yeo, “Device Physics and Design of Germanium Tunneling Field Effect Transistor with Source and Drain Engineering for Low Power and High Performance Applications”, Journal of Applied Physics, Vol. 103, No. 10, pp. 104504-1 – 104504-5, May 2008.
[52] O. M. Nayfeh, C. N. Chleirigh, J. Hennessy, L. Gomez, J. L. Hoyt, and D. A. Antoniadis, “Design of Tunneling Field Effect Transistors Using Strained-Silicon / Strained-Germanium Type-II Staggered Heterojunctions”, IEEE Electron Device Letters, Vol. 29, No. 9, pp. 1074-1077, Sep 2008.
[53] C. Sandow, J. Knoch, C. Urban, Q-T. Zhao, and S. Mantl, “Impact of Electrostatics and Doping Concentration on the Performance of Silicon Tunnel Field Effect Transistors”, Solid State Electronics, Vol. 53, pp. 1126-1129, 2009.
[54] P-F. Wang, T. Nirschl, D. Schmitt-Landsiedel, and W. Hansch, “Simulation of Esaki Tunneling FET”, Solid State Electronics, Vol. 47, pp. 1187-1192, 2003.
[55] Q. Zhang, S. Sutar, T. Ksel, and A. Seabaugh, “Fully Depleted GeInterband Tunnel Transistor: Modeling and Junction Formation”, Solid State Electronics, Vol. 53, No.1, pp. 30-35, Jan 2008.
[56] G. Han, P. Guo, Y. Yang, L. Fan, Y. S. Yee, C. Zhan, and Y-C Yeo, “Source Engineering for Tunnel Field Effect Transistor: Elevated Source with Vertical Silicon-Germanium / Germanium Heterostructure”, Japanese Journal of Applied Physics, Vol. 50, No. 4, pp. 04DJ07-04DJ07-4, 2011.
[57] T. Y. Chan, J. Chen, P. K. Ko, and C. Hu, “The Impact of Gate-Drain Leakage Current on MOSFET Scaling”, IEEE International Electron Device Meeting 2011, pp. 718, 1987.
[58] S. H. Kim, Z. A. Jacobson, and T-J. K. Liu, “Impact of Body Doping and Thickness on the Performance of Germanium-Source TEFETs”, IEEE Transaction on Electron Devices, Vol. 57, No.7, pp. 1710-1713, Jul 2010.
[59] S. H. Kim, S. Agarwal, Z. A. Jacobson, P. Matheu, C. Hu and T-J. K. Liu, “Tunnel Field Effect Transistor with Raised Germanium Source”, IEEE Electron Device Letters, Vol. 31, No. 10, pp. 1107-1109, Oct 2010.
[60] Z. A. Jacobson, S. H. Kim, P. Matheu, and T-J. K. Liu, “Source Design Optimization for the Planar Ge-Source n Channel TFET”, submitted to Solid State Electronics, 2011.
[61] P. Packan, S. Akbar, M. Armstrong, D. Bergstrom, M. Brazier, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han, J. He, R. Heussner, R. James, J. Jopling, C. Kenyon, S-H. Lee, M. Liu, S. Lodha, B. Mattis, A. Murthy, L. Neiberg, J. Neirynck, S. Pae, C. Parker, L. Pipes, J. Sebastian, J. Seiple,B. Sell, A. Sharma, S. Natarajan, “High Performance 32 nm Logic Technology Featuring 2nd Generation High-K + Metal Gate Transistors”, IEEE International Electron Device Meeting, pp. 659-662, 2009.
REFERENCES:
[1] S. H. Kim, H. Kam, C. Hu, and T.-J. K. Liu, “Ge-Source Tunnel Field Effect Transistors with Record High ION/IOFF,” VLSI Symposium Technical Digest, pp. 178–179, 2009.
[2] S. H. Kim, Z. A. Jacobson, and T.-J. K. Liu, “Impact of Body Doping and Thickness on the Performance of Germanium-Source TFETs,” IEEE Transaction on Electron Devices, Vol. 57, No. 7, pp. 1710–1713, Jul. 2010.
[3] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling Field-Effect Transistors (TFETs) with Subthreshold Swing (SS) Less Than 60 mV/dec,” IEEE Electron Device Letters, Vol. 28, No. 8, pp. 743–745, Aug. 2007.
[4] E.-H. Toh, G. H. Wang, G. Samudra, and Y.-C. Yeo, “Device Physics and Design of Germanium Tunneling Field-Effect Transistor with Source and Drain Engineering for Low Power and High Performance Applications,” Journal of Applied Physics, Vol. 103, No. 10, pp. 104504-1 - 104504-5, May 2008.
[5] N. Patel, A. Ramesha, and S. Mahapatra, “Drive Current Boosting of n-Type Tunnel FET with Strained SiGe Layer at Source,” Microelectronics Journal, Vol. 39, No. 12, Dec. 2008.
[6] E. O. Kane, “Zener Tunneling in Semiconductors,” Journal of Physics and Chemistry of Solids, Vol. 12, pp. 181, 1959.
[7] E. O. Kane, “Theory of tunneling,” Journal of Applied Physics, Vol. 32, pp. 83, 1961.
[8] J. L. Moll, Physics of Semiconductors. New York: McGraw-Hill, pp. 249-253, 1964.
[9] P. N. Butcher, K. F. Hulme, and J. R. Morgan, “Dependence of Peak Current Density on Acceptor Concentration in Germanium Tunnel Diodes,” Solid-State Electronics, Vol. 5, No. 5, pp. 358, 1962.
[10] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Hoboken, New Jersey: Wiley, pp. 90-98, 2007.
[11] W. G. Vandenberghe, A. S. Verhulst, G. Groeseneken, B. Sorée, and W. Magnus, “Analytical Model for Point and Line Tunneling in a Tunnel Field-Effect Transistor,” Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, pp. 137-140, Sep. 2008.
[12] R. F. Pierret, Semiconductor Device Fundamentals, Reading, Massachusetts: Addison- Wesley, pp. 597, 1996.
[13] International Technology Roadmap for Semiconductors (ITRS), 2007. (Available online at: http://public.itrs.net )
REFERENCES:
[1] Positive and Negative Photoresist, (Available online at: http://www.ece.gatech.edu/research/labs/vc/theory/PosNegRes.html )
[2] N. Stavitski, J.H. Klootwijk, H.W. van Zeijl, B.K. Boksteen, A.Y. Kovalgin, R.A.M. Wolters, “Cross-Bridge Kelvin Resistor (CBKR) Structures for Measurement of Low Contact Resistances,” Microelectronic Test Structures, ICMTS 2008, pp. 551–554, 2008.
[3] D. K. Schroder, “Semiconductor Material and Device Characterization”, 3rd ed. New York: Wiley-Interscience, IEEE, 2006.
[4] Keithley Application Notes Series, “Gate Dielectric Capacitance-Voltage Characterization Using the Model 4200 Semiconductor Characterization System”, Keithley Model 4200-SCS, Number 2239.
[5] B.Van Zeghbroeck, “Principles of Semiconductor Devices”, Chapter 7 “MOS Field Effect Transistors”, Episode 7.7.9 “Scaling”, 2011. (Available online at: http://ecee.colorado.edu/~bart/book/book/chapter7/ch7_7.htm )
[6] M. Zhang, J. Knoch, Q.T. Zhao, U. Breuer, S. Mantl, “Impact of dopant segregation on fully depleted Schottky-barrier SOI-MOSFETs”, Solid State Electronics, 2006.
[7] Hong Xiao, “Introduction to Semiconductor Manufacturing Technology”, Chapter 11 “Metallization”, pp. 452-462, 2005.
REFERENCES: [1] S. H. Kim, S. Agarwal, Z. A. Jacobson, P. Matheu, C. Hu, and T.-J. K. Liu, “Tunnel Field Effect Transistor with Raised Germanium Source,” IEEE Electron Device Letters, Vol. 31, No.10, pp. 1107-1109, Oct 2010.
|