帳號:guest(18.118.146.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭桐惟
作者(外文):Kuo, Tung Wei
論文名稱(中文):在圖連通條件下最大化次模集合函數:理論與網路應用
論文名稱(外文):Maximizing Submodular Set Function with Connectivity Constraint: Theory and Application to Networks
指導教授(中文):林靖茹
蔡明哲
指導教授(外文):Lin, Kate Ching-Ju
Tsai, Ming-Jer
口試委員(中文):許健平
高榮駿
王蒞君
陳銘憲
口試委員(外文):Sheu, Jang-Ping
Kao, Jung-Chun
Wang, Li-chun
Chen, Ming-Syan
學位類別:博士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:101062803
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:62
中文關鍵詞:網路布建近似演算法次模集合函數
外文關鍵詞:Network deploymentApproximation algorithmSubmodular set function
相關次數:
  • 推薦推薦:0
  • 點閱點閱:115
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
在這篇博士論文中,我們探討如何利用有限個無線路由器建構出最佳的無線網路。我們發現很多無線網路布建的目標,例如最大化服務客戶數、最大化覆蓋面積、或是最大化網路傳輸量,都可以利用次模集合函數來表示。更仔細地說,給定一些無線路由器,這篇博士論文的目標是放置這些無線路由器使得某個給定的次模集合函數被最大化。然而,這個問題比起傳統的最大化次模集合函數問題更加困難。這是因為這篇博士論文探討的問題需要這些被選中的地點構成一個連通的網路。除此之外,在不同的地點安裝無線路由器通常需要不同的花費。為了解決這些問題,這篇論文提出了兩個近似演算法,一個適用在所有地點都有相同的安裝花費,另一個適用在不同地點有不同安裝花費。我們的電腦模擬採用了人工合成的資料和來自台北市人口分布的資料。模擬結果顯示,這篇博士論文提出的演算法除了有理論上的效能保證外,實際上也表現得比其他的比較方法更好。
In this thesis, we investigate the wireless network deployment problem, which seeks the best deployment of a given limited number of wireless routers. We find that many goals for network deployment, such as maximizing the number of covered users, the size of the coverage area, or the total throughput of the network, can be modelled with a submodular set function. Specifically, given a set of routers, the goal is to find a set of locations S, each of which is equipped with a router, such that S maximizes a predefined submodular set function. However, this deployment problem is more difficult than the traditional maximum submodular set function problem, e.g., the maximum coverage problem, because it requires all the deployed routers to form a connected network. In addition, deploying a router in different locations might consume different costs. To address these challenges, this thesis introduces two approximation algorithms, one for homogeneous deployment cost scenarios and the other for heterogeneous deployment cost scenarios. Our simulations, using synthetic data and real traces of census in Taipei, show that the proposed algorithms not only have theoretical performance guarantee but also achieve better performances than other heuristics in practice.
List of Figures v
List of Tables viii
1 Introduction 1
2 Related Work 5
3 Maximum Connected Submodular Set Function Problem 7
3.1 Preliminaries 7
3.2 Maximum Connected Submodular Set Function Problem and Its Approximation Algorithm 10
4 Maximum Connected Submodular Set Function Problem with
Budget Constraint 17
4.1 Problem Definition and Preliminaries 17
4.2 Approximation Algorithm 19
4.3 Edge Weight Versus Vertex Weight 23
5 Applications 28
5.1 Maximizing the Number of Covered Users 29
5.2 Maximizing the Network Throughput 30
5.3 Maximizing the Size of the Coverage Area 32
6 Numerical Results 34
6.1 Simulation Results of the MCC Problem 36
6.2 Simulation Results of the MTCC Problem 41
6.3 Simulation Results of the MACC Problem 43
6.4 Impact of the Vertex Degrees and Density of the Graph 45
6.5 A Note on the Average Case and Worst Case Performances
of the Greedy Algorithms 46
6.6 Algorithms' Performances under the Information Provided by Censuses 48
7 Conclusion and Future Work 52
Appendices 54
Bibliography 59
[1] “IEEE 802.16 working group, part 16: Air interface for fixed and mobile broadband wireless access systems-multihop relay specification,” IEEE Draft Standard, 2007.
[2] The Dharamsala Community Wireless Mesh Network. [Online]. Available: http://drupal.airjaldi.com/node/56
[3] Technology and infrastructure for emerging regions (TIER). [Online]. Available:http://tier.cs.berkeley.edu/wiki/
[4] D. Johnson, “Evaluation of a single radio rural mesh network in South Africa,”in ICTD, 2007.
[5] K. Chebrolu and B. Raman, “Fractel: a fresh perspective on (rural) mesh networks,” in ACM SIGCOMM Workshop on Networked Systems for Developing Regions (NSDR), 2007.
[6] P. Dutta, S. Jaiswal, and R. Rastogi, “Routing and channel allocation in rural wireless mesh networks,” in IEEE INFOCOM, 2007.
[7] Community Wireless Solutions (CUWIN). [Online]. Available:
http://www.cuwin.org/
[8] J. W. S. Liu, C. S. Shih, and E. T. H. Chu, “Cyber-physical elements of disaster prepared smart environment,” Institute of Information Science, Academia Sinica, Tech. Rep. TR-IIS-11-001.
[9] G. L. Nemhauser, L. A.Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions-I,” Mathematical Programming, vol. 14, pp. 265–294, 1978.
[10] M. Sviridenko, “A note on maximizing a submodular set function subject to a knapsack constraint,” Operations Research Letters, vol. 32, pp. 41–43, 2004.
[11] A. Krause and C. Guestrin, “A note on the budgeted maximization of submodular functions,” School of Computer Science, Carnegie Mellon University, Tech. Rep. CMU-CALD-05-103.
[12] S. Khuller, A.Moss, and J. S. Naor, “The budgeted maximum coverage problem,”Information Processing Letters, vol. 70, pp. 39–45, 1999.
[13] H. Gupta, Z. Zhou, S. Das, and Q. Gu, “Connected sensor cover: self-organization of sensor networks for efficient query execution,” IEEE/ACM Transactions on Networking, vol. 14, pp. 55–67, 2006.
[14] S. Funke, A. Kesselman, F. Kuhn, Z. Lotker, and M. Segal, “Improved approximation algorithms for connected sensor cover,” Wireless Networks, vol. 13, pp. 153–164, 2007.
[15] K. Kar and S. Banerjee, “Node placement for connected coverage in sensor networks,” in WiOpt, 2003.
[16] G. Borradaile, B. Heeringa, and G. T. Wilfong, “Approximation algorithms for constrained knapsack problems,” CoRR, abs/0910.0777, 2009.
[17] F. Vandin, E. Upfal, and B. J. Raphael, “Algorithms for detecting significantly mutated pathways in cancer,” Journal of Computational Biology, vol. 18, pp. 507–522, 2011.
[18] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg, “Near-optimal sensor placements: maximizing information while minimizing communication cost,” in ACM/IEEE IPSN, 2006.
[19] D. S. Johnson, M. Minkoff, and S. Phillips, “The prize collecting steiner tree problem: Theory and practice,” in ACM-SIAM SODA, 2000.
[20] L. Lovasz, “Submodular functions and convexity,” Mathematical Programming: The State of the Art, pp. 235–257, 1983.
[21] J. E. Knight, “Some remarks concerning finitely subadditive outer measures with applications,” International Journal of Mathematics and Mathematical Sciences, vol. 21, pp. 653–669, 1998.
[22] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,” Discrete Mathematics, vol. 86, pp. 165–177, 1990.
[23] S. Misra, S. D. Hong, G. Xue, and J. Tang, “Constrained relay node placement in wireless sensor networks to meet connectivity and survivability requirements,” in IEEE INFOCOM, 2008.
[24] D. B. West, Introduction to Graph Theory. Upper Saddle River, NJ, USA: Prentice Hall, 2000.
[25] R. V. Vohra and N. G. Hall, “A probabilistic analysis of the maximal covering location problem,” Discrete Applied Mathematics, vol. 43, pp. 175–183, 1993.
[26] D. Agrawal and Q. Zeng, Introduction to Wireless and Mobile Systems. Toronto, Ontario, Canada: Thomson Nelson, 2006.
[27] 802.11b PHY Simulink Model. [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/2262
[28] [Online]. Available: http://www.czone2.tcg.gov.tw/
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *