帳號:guest(3.147.45.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉品均
論文名稱(中文):基於低秩稀疏分解進行特徵混合之局部影像竄改偵測
論文名稱(外文):A Feature Fusion Model with Rank-Sparsity Decomposition for Image Tampering Localization
指導教授(中文):許秋婷
口試委員(中文):許秋婷
陳煥宗
王聖智
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:101062576
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:53
中文關鍵詞:局部影像竄改偵測特徵混合低秩稀疏分解
相關次數:
  • 推薦推薦:0
  • 點閱點閱:276
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
隨著影像編輯軟體的功能越來越強大,現今大部分的人都能夠輕易的竄改一張影像。雖然影像竄改偵測的技術已經發展了一段時間,大部分的方法只著重在討論單一種類的竄改方式。除此之外,大部分的方法都只能判斷一個可疑的區域是否可信,無法直接的標示出一張影像中的竄改位置。這篇論文的目的是提出一個能夠同時利用所有資訊的特徵混和模型,並且能夠自動及直接的找出竄改區域。我們採用強健式主成分分析(Robust Principal Component Analysis)將一張待測影像拆解成「未被竄改」以及「被竄改」兩部分,其中「未被竄改」的區域的特徵彼此具有相似的表現,換句話說,這些特徵所構成的矩陣具有低秩(Low-Rank)的性質;而「被竄改」的區域的特徵所構成的矩陣是稀疏的(Sparse)且具有低秩(Low-Rank)的特性。我們利用群稀疏(Group-Sparsity)的技術使得偵測到的竄改區域在空間上具有一致性的效果。實驗結果顯示在不同的例子中,我們提出的方法表現得都比現存的方法還要好。
Nowadays, image editing softwares are powerful and user-friendly that most people can easily create visual-pleasant tampered images. The techniques of image forensics have been developed for about two decades. However, most techniques only focus on one tampering trace. In addition, they sometimes assume that the suspicious region is known a priori. The purpose of this work is to develop a feature fusion model which can utilize all the available traces and automatically localize the tampered region. We adopt the early fusion scheme to fuse features in order to consider all the available features simultaneously. We propose to utilize Robust Principal Component Analysis (RPCA) to decompose one test image into authentic parts and tampered parts. We assume the authentic parts share similar feature behaviors, i.e., low-rank, and the tampered parts are sparse and also share similar feature behaviors, i.e., sparse and low-rank. We consider the spatial consistency of the detected tampered parts by using Group-Sparsity. The experimental results demonstrate the effectiveness of the proposed method, which outperforms the state-of-the-art methods in both synthetic and realistic cases.
中文摘要 1
Abstract 2
1. Introduction 4
1.1 Image Forensics 4
1.2 The Fusion-based Model for Image Forensics 6
2. Related Work 9
2.1 Statistic-based Method 9
2.1.1 Localization of A-DJPG 9
2.1.2 Localization of NA-DJPG 11
2.2 Feature Fusion Model 12
2.3 Discussion 13
3. Proposed Method 15
3.1 Motivation 15
3.2 Review of RPCA 16
3.3 Tampering Localization 17
3.3.1 Notation 17
3.3.2 Problem Formulation 18
3.3.3 Group-Sparsity 19
3.3.4 Early Fusion of Features 20
3.3.5 Optimization Methodology 20
3.4 Feature Concatenation 23
4. Experimental Results 25
4.1 Robustness of Features in JPEG Compressed Images 25
4.2 Evaluation on Synthetic Datasets 27
4.2.1 The Synthetic Dataset 1 and Tampering Cases 28
4.2.2 The Synthetic Dataset 2 29
4.2.3 Evaluation on Feature Concatenation and Feature Fusion 30
4.2.4 Results on the Synthetic Dataset 1 35
4.2.5 Results on the Synthetic Dataset 2 38
4.3 Evaluation on the Inpainted Image 41
4.4 Experimental Results on Realistic Cases 42
4.4.1 The Realistic Example 1 42
4.4.2 The Realistic Example 2 43
4.5 Extension to Video Tampering Localization 44
5. Conclusion 49
6. Reference 50
[1] P. Ferrara, T. Bianchi, A. De Rosa, and A. Piva, “Image Forgery Localization via Fine-Grained Analysis of CFA Artifacts,” IEEE Trans. Information Forensics and Security, vol. 7, no. 5, pp. 1566-1577, Oct. 2012.
[2] J. Lukas, J. Fridrich, and M. Goljan, “Digital Camera Identification From Sensor Pattern Noise,” IEEE Trans. Information Forensics and Security, vol. 1, no. 2, pp. 205-214, Jun. 2006.
[3] M. Chen, J. Fridrich, M. Goljan, and J. Lukas, “Determining Image Origin and Integrity Using Sensor Noise,” IEEE Trans. Information Forensics and Security, vol. 3, no. 1, pp. 74-90, Mar. 2008.
[4] G. Chierchia, G. Poggi, C. Sansone, and L. Verdoliva, ”PRNU-based Forgery Detection with Regularity Constraints and Global Optimization,” in Proc. MMSP, pp. 236-241, 2013.
[5] A. C. Popescu and H. Farid, “Exposing Digital Forgeries by Detecting Traces of Resampling,“ IEEE Trans. Signal Processing, vol. 53, no. 2, pp. 758-767, Feb. 2005.
[6] G. Cao, Y. Zhao, R. Ni, and X. Li, “Contrast Enhancement-Based Forensics in Digital Images,“ IEEE Trans. Information Forensics and Security, vol. 9, no. 3, pp. 515-525, Mar. 2014.
[7] J. Lukas and J. Fridrich, “Estimation of primary quantization matrix in double compressed JPEG images,” in Proc. Digital Forensic Research Workshop, Cleveland, Ohio, Aug. 2003.
[8] A. C. Popescu and H. Farid, “Statistical tools for digital forensics,” in Proc. 6th Int. Workshop on Information Hiding, vol. 3200, pp. 128-147, May. 2004.
[9] D. Fu, Y. Q. Shi, and W. Su, “A generalized Benford’s law for JPEG coefficients and its applications in image forensics,” in Proc. SPIE, 2007.
[10] W. Luo, Z. Qu, J. Huang, and G. Qiu, "A novel method for detecting cropped and recompressed image block," in Proc. ICASSP, pp. 217-220, Apr. 2007.
[11] Y. L. Chen and C. T. Hsu, “Image tampering detection by blocking periodicity analysis JPEG compressed images,” in Proc. IEEE 10th Workshop MMSP, Oct. 2008.
[12] Y. L. Chen and C. T. Hsu, “Detecting recompression of JPEG images via periodicity analysis of compression artifacts for tampering detection,” IEEE Trans. Information Forensics and Security, vol. 6, no. 2, pp. 396-406, Jun. 2011.
[13] Z. Lin, J. He, X. Tang, and C.-K. Tang, “Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis,” Pattern Recognition, vol. 42, no. 11, pp. 2492-2501, Nov. 2009.
[14] M. Barni, A. Costanzo, and L. Sabatini, “Identification of cut and paste tampering by means of double-JPEG detection and image segmentation,” in Proc. ISCAS, 2010.
[15] T. Bianchi and A. Piva, “Image forgery localization via block-grained analysis of JPEG artifacts,” IEEE Trans. Information Forensics and Security, vol. 7, no. 3, pp. 1003-1017, Jun. 2012.
[16] Y. F. Hsu and S. F. Chang, “Statistical fusion of multiple cues for image tampering detection,” in Proc. 42nd Asilomar Conf. Signals, Systems and Computers, pp. 1386-1390, Oct. 2008.
[17] J. He, Z. Lin, L. Wang, and X. Tang, “Detecting doctored jpeg images via DCT coefficient analysis,” in Proc. ECCV, 2006.
[18] T. T. Ng, S. F. Chang, and M. P. Tsui, “Using geometry invariants for camera response function estimation,” IEEE Conf. Computer Vision and Pattern Recognition, pp. 1-8, 2007.
[19] M. Fontani, T. Bianchi, A. De Rosa, A. Piva, and M. Barni, “A Framework for Decision Fusion in Image Forensics Based on Dempster–Shafer Theory of Evidence,” IEEE Trans. Information Forensics and Security, vol. 8, no. 4, pp. 593-607, Apr. 2013.
[20] C. G. Snoek, M. Worring, and A. W. Smeulders, “Early versus late fusion in semantic video analysis,” in Proc. ACM Multimedia, 2005.
[21] Y. L. Chen and C. T. Hsu, “What has been Tampered? From a Sparse Manipulation Perspective,” in Proc. MMSP, pp. 123-128, 2013.
[22] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization,” in Proc. NIPS, Dec. 2009.
[23] O. Oreifej, X. Li, and M. Shah, “Simultaneous Video Stabilization and Moving Object Detection in Turbulence,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp. 450-462, Feb. 2013.
[24] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, “RASL: Robust Alignment by Sparse and Low-rank Decomposition for Linearly Correlated Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2233-2246, Nov. 2012.
[25] C. Guyon, T. Bouwmans, and E. H. Zahzah, “Foreground detection based on low-rank and block-sparse matrix decomposition,” in Proc. ICIP, pp. 1225-1228, 2012.
[26] Z. Lin, M. Chen, and Y. Ma, “The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices,” UIUC Technical Report UILU-ENG-09-2214, Oct. 2010.
[27] Z. Gao, L. F. Cheong, and M. Shan, “Block-sparse RPCA for Consistent Foreground Detection,” in Proc. ECCV, 2012.
[28] S. Prasad and K. R. Ramakrishnan, “On resampling detection and its application to detect image tampering,” in Proc. ICME, pp. 1325-1328, 2006.
[29] H. Farid, “Exposing digital forgeries from JPEG ghosts,” IEEE Trans. Information Forensics and Security, vol. 4, no. 1, pp. 154-160, Mar. 2009.
[30] G. Schaefer and M. Stich, "UCID - An Uncompressed Colour Image Database," in Proc. SPIE, Storage and Retrieval Methods and Applications for Multimedia, pp. 472-480, San Jose, USA, 2004.
[31] A. Mansfield, M. Prasad, C. Rother, T. Sharp, P. Kohli, and L. Van Gool, "Transforming image completion," in Proc. Brit. Mach. Vis. Conf., pp. 1-11, 2011.
[32] G. Qadir, S. Yahahya, and A. T. S. Ho, “Surrey University Library for Forensic Analysis (SULFA),” in Proc. IET IPR, London, 3-4 Jul. 2012.
[33] https://www.ffmpeg.org/
[34] W. H. Chuang, H. Su, and M. Wu, “Exploring compression effects for improved source camera identification using strongly compressed video,“ in Proc. ICIP, pp.1953-1956, 2011.
[35] C. Knaus and M. Zwicker, “Dual-Domain Image Denoising,” in Proc. ICIP, pp. 440-444, 2013.
[36] A. Swaminathan, M. Wu, and K. J. R. Liu, “Nonintrusive Component Forensics of Visual Sensors Using Output Images,” IEEE Trans. Information Forensics and Security, vol. 2, no. 1, pp. 91-106, Mar. 2007.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *