|
[1] P. Ferrara, T. Bianchi, A. De Rosa, and A. Piva, “Image Forgery Localization via Fine-Grained Analysis of CFA Artifacts,” IEEE Trans. Information Forensics and Security, vol. 7, no. 5, pp. 1566-1577, Oct. 2012. [2] J. Lukas, J. Fridrich, and M. Goljan, “Digital Camera Identification From Sensor Pattern Noise,” IEEE Trans. Information Forensics and Security, vol. 1, no. 2, pp. 205-214, Jun. 2006. [3] M. Chen, J. Fridrich, M. Goljan, and J. Lukas, “Determining Image Origin and Integrity Using Sensor Noise,” IEEE Trans. Information Forensics and Security, vol. 3, no. 1, pp. 74-90, Mar. 2008. [4] G. Chierchia, G. Poggi, C. Sansone, and L. Verdoliva, ”PRNU-based Forgery Detection with Regularity Constraints and Global Optimization,” in Proc. MMSP, pp. 236-241, 2013. [5] A. C. Popescu and H. Farid, “Exposing Digital Forgeries by Detecting Traces of Resampling,“ IEEE Trans. Signal Processing, vol. 53, no. 2, pp. 758-767, Feb. 2005. [6] G. Cao, Y. Zhao, R. Ni, and X. Li, “Contrast Enhancement-Based Forensics in Digital Images,“ IEEE Trans. Information Forensics and Security, vol. 9, no. 3, pp. 515-525, Mar. 2014. [7] J. Lukas and J. Fridrich, “Estimation of primary quantization matrix in double compressed JPEG images,” in Proc. Digital Forensic Research Workshop, Cleveland, Ohio, Aug. 2003. [8] A. C. Popescu and H. Farid, “Statistical tools for digital forensics,” in Proc. 6th Int. Workshop on Information Hiding, vol. 3200, pp. 128-147, May. 2004. [9] D. Fu, Y. Q. Shi, and W. Su, “A generalized Benford’s law for JPEG coefficients and its applications in image forensics,” in Proc. SPIE, 2007. [10] W. Luo, Z. Qu, J. Huang, and G. Qiu, "A novel method for detecting cropped and recompressed image block," in Proc. ICASSP, pp. 217-220, Apr. 2007. [11] Y. L. Chen and C. T. Hsu, “Image tampering detection by blocking periodicity analysis JPEG compressed images,” in Proc. IEEE 10th Workshop MMSP, Oct. 2008. [12] Y. L. Chen and C. T. Hsu, “Detecting recompression of JPEG images via periodicity analysis of compression artifacts for tampering detection,” IEEE Trans. Information Forensics and Security, vol. 6, no. 2, pp. 396-406, Jun. 2011. [13] Z. Lin, J. He, X. Tang, and C.-K. Tang, “Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis,” Pattern Recognition, vol. 42, no. 11, pp. 2492-2501, Nov. 2009. [14] M. Barni, A. Costanzo, and L. Sabatini, “Identification of cut and paste tampering by means of double-JPEG detection and image segmentation,” in Proc. ISCAS, 2010. [15] T. Bianchi and A. Piva, “Image forgery localization via block-grained analysis of JPEG artifacts,” IEEE Trans. Information Forensics and Security, vol. 7, no. 3, pp. 1003-1017, Jun. 2012. [16] Y. F. Hsu and S. F. Chang, “Statistical fusion of multiple cues for image tampering detection,” in Proc. 42nd Asilomar Conf. Signals, Systems and Computers, pp. 1386-1390, Oct. 2008. [17] J. He, Z. Lin, L. Wang, and X. Tang, “Detecting doctored jpeg images via DCT coefficient analysis,” in Proc. ECCV, 2006. [18] T. T. Ng, S. F. Chang, and M. P. Tsui, “Using geometry invariants for camera response function estimation,” IEEE Conf. Computer Vision and Pattern Recognition, pp. 1-8, 2007. [19] M. Fontani, T. Bianchi, A. De Rosa, A. Piva, and M. Barni, “A Framework for Decision Fusion in Image Forensics Based on Dempster–Shafer Theory of Evidence,” IEEE Trans. Information Forensics and Security, vol. 8, no. 4, pp. 593-607, Apr. 2013. [20] C. G. Snoek, M. Worring, and A. W. Smeulders, “Early versus late fusion in semantic video analysis,” in Proc. ACM Multimedia, 2005. [21] Y. L. Chen and C. T. Hsu, “What has been Tampered? From a Sparse Manipulation Perspective,” in Proc. MMSP, pp. 123-128, 2013. [22] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization,” in Proc. NIPS, Dec. 2009. [23] O. Oreifej, X. Li, and M. Shah, “Simultaneous Video Stabilization and Moving Object Detection in Turbulence,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp. 450-462, Feb. 2013. [24] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, “RASL: Robust Alignment by Sparse and Low-rank Decomposition for Linearly Correlated Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2233-2246, Nov. 2012. [25] C. Guyon, T. Bouwmans, and E. H. Zahzah, “Foreground detection based on low-rank and block-sparse matrix decomposition,” in Proc. ICIP, pp. 1225-1228, 2012. [26] Z. Lin, M. Chen, and Y. Ma, “The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices,” UIUC Technical Report UILU-ENG-09-2214, Oct. 2010. [27] Z. Gao, L. F. Cheong, and M. Shan, “Block-sparse RPCA for Consistent Foreground Detection,” in Proc. ECCV, 2012. [28] S. Prasad and K. R. Ramakrishnan, “On resampling detection and its application to detect image tampering,” in Proc. ICME, pp. 1325-1328, 2006. [29] H. Farid, “Exposing digital forgeries from JPEG ghosts,” IEEE Trans. Information Forensics and Security, vol. 4, no. 1, pp. 154-160, Mar. 2009. [30] G. Schaefer and M. Stich, "UCID - An Uncompressed Colour Image Database," in Proc. SPIE, Storage and Retrieval Methods and Applications for Multimedia, pp. 472-480, San Jose, USA, 2004. [31] A. Mansfield, M. Prasad, C. Rother, T. Sharp, P. Kohli, and L. Van Gool, "Transforming image completion," in Proc. Brit. Mach. Vis. Conf., pp. 1-11, 2011. [32] G. Qadir, S. Yahahya, and A. T. S. Ho, “Surrey University Library for Forensic Analysis (SULFA),” in Proc. IET IPR, London, 3-4 Jul. 2012. [33] https://www.ffmpeg.org/ [34] W. H. Chuang, H. Su, and M. Wu, “Exploring compression effects for improved source camera identification using strongly compressed video,“ in Proc. ICIP, pp.1953-1956, 2011. [35] C. Knaus and M. Zwicker, “Dual-Domain Image Denoising,” in Proc. ICIP, pp. 440-444, 2013. [36] A. Swaminathan, M. Wu, and K. J. R. Liu, “Nonintrusive Component Forensics of Visual Sensors Using Output Images,” IEEE Trans. Information Forensics and Security, vol. 2, no. 1, pp. 91-106, Mar. 2007. |