|
References
[1] Apple ibeacon. https://developer.apple.com/ibeacon/.
[2] Course note of computational statistics and data analysis. http://www.wikicoursenote.com/ wiki/Stat341.
[3] D-separation. http://www.bayesnets.com/D-separation.html.
[4] Law of large numbers. http://en.wikipedia.org/wiki/Law_of_large_numbers.
[5] Michigan chemical engineering process dynamics and controls open electronic textbook. https://controls.engin.umich.edu/wiki/index.php/Bayesian_network_theory.
[6] Monte carlo method. http://en.wikipedia.org/wiki/Monte_Carlo_method.
[7] ARULAMPALAM, M. S., MASKELL, S., AND GORDON, N. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE TRANSACTIONS ON SIGNAL PRO- CESSING 50 (2002), 174–188.
[8] CONSTANDACHE, I., BAO, X., CHOUDHURY, R. R., AND AZIZYAN, M. Did you see bob?: human localization using mobile phones. In In Proceedings of ACM International Conference on Mobile Computing and Networking (MobiCom ’10) (2010), ACM, ACM, pp. 149–160.
[9] DAVIDSON, P., COLLIN, J., AND TAKALA, J. Application of particle filters for indoor po- sitioning using floor plans. In Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS), 2010 (Oct 2010), IEEE, IEEE, pp. 1–4.
[10] DOUCET, A., DE FREITAS, N., AND GORDON, N. An introduction to sequential monte carlo methods. In Sequential Monte Carlo Methods in Practice. Springer-Verlag, 2001, ch. 1, pp. 3 – 14. 124
[11] DOUCET, A., GODSILL, S., AND ANDRIEU, C. On sequential monte carlo sampling methods for bayesian filtering. STATISTICS AND COMPUTING 10, 3 (2000), 197–208.
[12] DOUCET, A., AND JOHANSEN, A. M. A tutorial on particle filtering and smoothing: fifteen years later, 2011.
[13] HUE, C., P. LE CADRE, J., AND PREZ, P. Tracking multiple objects with particle filtering, 2000.
[14] KONG, A., LIU, J. S., AND WONG, W. H. Sequential imputations and bayesian missing data problems. American Statistical Association 89, 425 (March 1994), 278–288.
[15] LI, F., ZHAO, C., DING, G., GONG, J., LIU, C., AND ZHAO, F. A reliable and accurate indoor localization method using phone inertial sensors. In In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UbiComp ’12) (2012), ACM, ACM, pp. 421–430.
[16] OKUMA, K., TALEGHANI, A., FREITAS, N. D., FREITAS, O. D., LITTLE, J. J., AND LOWE, D. G. A boosted particle filter: Multitarget detection and tracking. In In the European Confer- ence on Computer Vision(ECCV 2004) (2004), pp. 28–39.
[17] ORLANDE, H. R. B., COLACO, M. J., DULIKRAVICH, G. S., VIANNA, F. L. V., DA SILVA, W. B., DA FONSECA, H. M., AND FUDYM, O. Tutorial 10:kalman and particle filters. http://www.sft.asso.fr/Local/sft/dir/user-3775/documents/actes/Metti5_ School/Lectures&Tutorials-Texts/Text-T10-Orlande.pdf.
[18] OWEN, A. B. Monte Carlo theory, methods and examples. 2013.
[19] RAI, A., CHINTALAPUDI, K. K., PADMANABHAN, V. N., AND SEN, R. Zee: Zero-effort crowdsourcing for indoor localization. In In Proceedings of ACM International Conference on Mobile Computing and Networking (MobiCom ’12) (2012), ACM, ACM, pp. 293–304.
[20] SCHEINES, R. D-separation tutorial. http://www.andrew.cmu.edu/user/scheines/tutor/ d-sep.html.
[21] SYMINGTON, A., AND TRIGONI, N. Encounter based sensor tracking. In In Proceedings of the thirteenth ACM international symposium on Mobile Ad Hoc Networking and Computing (MobiHoc ’12) (2012), ACM, ACM, pp. 15–24. 125
[22] WIDYAWAN, KLEPAL, M., AND BEAUREGARD, S. A backtracking particle filter for fusing building plans with pdr displacement estimates. In Positioning, Navigation and Communication, 2008. WPNC 2008. 5th Workshop on (March 2008), IEEE, IEEE, pp. 207–212. |