帳號:guest(3.145.73.196)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉怡均
作者(外文):Liou, Yi-Jyun
論文名稱(中文):藉由文字驅動的即時人臉及頭髮動畫系統
論文名稱(外文):Text-Driven Real-Time Facial and Hair Animation System
指導教授(中文):朱宏國
指導教授(外文):Chu, Hung-Kuo
口試委員(中文):賴尚宏
朱宏國
姚智原
李潤容
口試委員(外文):Shang-Hong Lai
Hung-Kuo Chu
Chih-Yuan Yao
Ruen-Rone Lee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:101062559
出版年(民國):103
畢業學年度:103
語文別:英文
論文頁數:54
中文關鍵詞:及時頭髮模擬及時繪圖動畫合成臉部動作轉換骨骼動畫線性蒙皮語音轉換唇形
外文關鍵詞:real-time hair simulationreal-time renderinganimation synthesisfacial motion retargetingrigginglinear blend skinningtext-to-speechviseme
相關次數:
  • 推薦推薦:0
  • 點閱點閱:967
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  模擬人臉動畫,包括臉部及頭部動作,以及頭髮運動往往需要花費大量的人力與時間。礙於這些繁複的過程,過去的系統很難讓一般民眾能夠使用。我們的系統避開了這些缺陷,並融合過去沒有的頭髮模擬,讓任何人都能夠輕鬆享受我們的系統。

  我們開發一套藉由文字驅動的動畫系統,可以及時模擬使用者真實閱讀的樣貌-逼真的人臉及頭髮動畫。同時我們將前置作業減到最少,使用者只要提供人臉頭髮模型及閱讀文字,即可產生對應的模擬動畫。

  人臉動畫我們使用變形傳遞技術產生使用者不同的臉部動作,再藉由分析文字內容並使用基於規則的方法來合成忠實的人臉動畫。
頭髮動畫我們使用骨骼驅動的技術來實現,即使頭髮數量龐大仍然可以即時模擬。我們的動畫合成系統大大節省過去需要花費的人力及時間。

  實驗結果證明我們的方法不需要訓練也能產生寫實的動畫,即使使用者的人臉及頭髮的幾何複雜,模擬動畫也可以即時合成出來。
Synthesize facial animation, including facial and head motion, and hair dynamics are consuming. They usually require a lot of human resources and time, people hard to produce animation in the past. Our system requires no complicated process, ordinary people can easily use it. Also, it is a great invention that we animate facial as well as hair dynamics. Our convenience and functionality make the users unable to resist it.

We develop a text-driven real-time animation system. The users only provide us face and hair models as well as text, we can immediately synthesize facial motion and hair dynamics like actual reading. Realistic animation can be produced in real-time without requiring any tedious preparations.

In order to faithfully synthesize facial animation, we produce all kind of user-specific facial motion by performing deformation transfer. By analyzing text information, we synthesize realistic facial motions by rule-based approach. As for hair animation, we apply skeleton-based techniques to simulate delicate hair dynamics. Despite a large amount of hair strands, we can still real-time animate by our proposed methods.

Our results show that our system produces realistic animation with no training process. Even though the user's models are complicated, we can still simulate in real-time.
Z`Š . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives and Challenges . . . . . . . . . . . . . . . . . 2
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Facial Animation . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Hair Animation . . . . . . . . . . . . . . . . . . . . . . . 6
3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Face Reconstruction . . . . . . . . . . . . . . . . . . . . 11
4.2 Hair Reconstruction . . . . . . . . . . . . . . . . . . . . 12
5 Text-Driven Facial Animation . . . . . . . . . . . . . . . . . . 14
5.1 Text-to-Speech . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.1 Phoneme Analysis . . . . . . . . . . . . . . . . . 14
5.1.2 Mouth Shapes . . . . . . . . . . . . . . . . . . . . 15
5.2 Facial Motion Blending . . . . . . . . . . . . . . . . . . . 17
5.2.1 Key Frame Interpolation . . . . . . . . . . . . . . 18
5.2.2 Time Alignment . . . . . . . . . . . . . . . . . . . 20
5.2.3 Head Motion . . . . . . . . . . . . . . . . . . . . 22
5.3 Facial Motion Retargeting . . . . . . . . . . . . . . . . . 25
6 Hair Dynamics Simulation . . . . . . . . . . . . . . . . . . . . 28
6.1 Hair Strands Clustering . . . . . . . . . . . . . . . . . . 29
6.2 Hair Bones Generation . . . . . . . . . . . . . . . . . . . 30
6.3 Hair Animation via Linear Blend Skinning . . . . . . . . 32
6.4 Physical Simulation . . . . . . . . . . . . . . . . . . . . . 35
7 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 38
8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 44
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
[1] K.-i. Anjyo, Y. Usami, and T. Kurihara. A simple method for extracting the
natural beauty of hair. In ACM SIGGRAPH Computer Graphics, volume 26,
pages 111{120. ACM, 1992.
[2] Y. Bando, B.-Y. Chen, and T. Nishita. Animating hair with loosely connected
particles. In Computer Graphics Forum, volume 22, pages 411{418. Wiley Online
Library, 2003.
[3] I. Baran and J. Popovic. Automatic rigging and animation of 3d characters. In
ACM Transactions on Graphics (TOG), volume 26, page 72. ACM, 2007.
[4] T. Beier and S. Neely. Feature-based image metamorphosis. In ACM SIGGRAPH
Computer Graphics, volume 26, pages 35{42. ACM, 1992.
[5] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. Discrete
elastic rods. ACM Transactions on Graphics (TOG), 27(3):63, 2008.
[6] F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, and J.-L. Lev^eque.
Super-helices for predicting the dynamics of natural hair. In ACM Transactions
on Graphics (TOG), volume 25, pages 1180{1187. ACM, 2006.
[7] F. Bertails, T.-Y. Kim, M.-P. Cani, and U. Neumann. Adaptive wisp tree: a multiresolution
control structure for simulating dynamic clustering in hair motion. In
Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 207{213. Eurographics Association, 2003.
[8] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces. In
Proceedings of the 26th annual conference on Computer graphics and interactive
techniques, pages 187{194. ACM Press/Addison-Wesley Publishing Co., 1999.
[9] C. Cao, Y. Weng, S. Lin, and K. Zhou. 3d shape regression for real-time facial
animation.
50
[10] J.-x. Chai, J. Xiao, and J. Hodgins. Vision-based control of 3d facial animation. In
Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 193{206. Eurographics Association, 2003.
[11] M. Chai, L. Wang, Y. Weng, Y. Yu, B. Guo, and K. Zhou. Single-view hair modeling
for portrait manipulation. ACM Transactions on Graphics (TOG), 31(4):116,
2012.
[12] J. T. Chang, J. Jin, and Y. Yu. A practical model for hair mutual interactions. In
Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 73{80. ACM, 2002.
[13] S.-H. L. Chao-An Chen. Reconstruction of 3d hair strand model from multi-view
face images. Master's thesis, National Tsing Hua University.
[14] B. Choe and H.-S. Ko. A statistical wisp model and pseudophysical approaches
for interactive hairstyle generation. Visualization and Computer Graphics, IEEE
Transactions on, 11(2):160{170, 2005.
[15] R. Delmonte. Prosodic tools for language learning. International Journal of Speech
Technology, 12(4):161{184, 20.
[16] Z. Deng, U. Neumann, J. P. Lewis, T.-Y. Kim, M. Bulut, and S. Narayanan.
Expressive facial animation synthesis by learning speech coarticulation and expression
spaces. Visualization and Computer Graphics, IEEE Transactions on,
12(6):1523{1534, 2006.
[17] J. Duddington. espeak, May 2013.
[18] M. Garland and P. S. Heckbert. Surface simpli cation using quadric error metrics.
In Proceedings of the 24th annual conference on Computer graphics and interactive
techniques, pages 209{216. ACM Press/Addison-Wesley Publishing Co., 1997.
[19] S. Giampiero, B. Jonas, A. M. Samer, G. Bjorn, et al. Synface{speech-driven
facial animation for virtual speech-reading support. EURASIP journal on audio,
speech, and music processing, 2009, 2009.
51
[20] S. Hadap and N. Magnenat-Thalmann. Interactive hair styler based on
uid
ow.
Springer, 2000.
[21] K. Hiwada, A. Maki, and A. Nakashima. Mimicking video: real-time morphable
3d model tting. In Proceedings of the ACM symposium on Virtual reality software
and technology, pages 132{139. ACM, 2003.
[22] P. Hong, Z.Wen, and T. Huang. An integrated framework for face modeling, facial
motion analysis and synthesis. In Proceedings of the ninth ACM international
conference on Multimedia, pages 495{498. ACM, 2001.
[23] P. Hong, Z. Wen, T. S. Huang, and H.-Y. Shum. Real-time speech-driven 3d
face animation. In 3D Data Processing Visualization and Transmission, 2002.
Proceedings. First International Symposium on, pages 713{716. IEEE, 2002.
[24] IEEE. A 3D Face Model for Pose and Illumination Invariant Face Recognition,
Genova, Italy, 2009.
[25] W. Jakob, J. T. Moon, and S. Marschner. Capturing hair assemblies ber by ber.
In ACM Transactions on Graphics (TOG), volume 28, page 164. ACM, 2009.
[26] G. A. Kalberer and L. Van Gool. Face animation based on observed 3d speech dynamics.
In Computer Animation, 2001. The Fourteenth Conference on Computer
Animation. Proceedings, pages 20{251. IEEE, 2001.
[27] T.-Y. Kim and U. Neumann. A thin shell volume for modeling human hair. In
Computer Animation 2000. Proceedings, pages 104{111. IEEE, 2000.
[28] C. K. Koh and Z. Huang. Real-time animation of human hair modeled in strips.
Springer, 2000.
[29] D.-W. Lee and H.-S. Ko. Natural hairstyle modeling and animation. Graphical
Models, 63(2):67{85, 2001.
[30] W. Liang and Z. Huang. An enhanced framework for real-time hair animation.
In Computer Graphics and Applications, Paci c Conference on, pages 467{467.
IEEE Computer Society, 2003.
52
[31] A. LLC. Annosoft, 2008.
[32] T. MIR lab. Asra library for speech recognition and assessment, January 2014.
[33] J. Osipa. Stop Staring: Facial Modeling and Animation Done Right. Sybex, 3
edition, October 2010.
[34] S. Paris, W. Chang, O. I. Kozhushnyan, W. Jarosz, W. Matusik, M. Zwicker,
and F. Durand. Hair photobooth: geometric and photometric acquisition of real
hairstyles. ACM Trans. Graph, 27(3):30, 2008.
[35] M. J. D. Powell. Algorithms for approximation. chapter Radial Basis Functions
for Multivariable Interpolation: A Review, pages 143{167. Clarendon Press, New
York, NY, USA, 1987.
[36] R. E. Rosenblum, W. E. Carlson, and E. Tripp. Simulating the structure and
dynamics of human hair: modelling, rendering and animation. The Journal of
Visualization and Computer Animation, 2(4):141{148, 1991.
[37] R. W. Sumner and J. Popovic. Deformation transfer for triangle meshes. ACM
Trans. Graph., 23(3):399{405, 2004.
[38] C. M. University. Carnegie mellon university pronouncing dictionary, October
2007.
[39] T. Wang and X. D. Yang. Hair design based on the hierarchical cluster hair
model. In Geometric modeling: techniques, applications, systems and tools, pages
329{359. Springer, 2004.
[40] K. Ward, F. Bertails, T.-Y. Kim, S. R. Marschner, M.-P. Cani, and M. C. Lin.
A survey on hair modeling: Styling, simulation, and rendering. Visualization and
Computer Graphics, IEEE Transactions on, 13(2):213{234, 2007.
[41] Y. Watanabe and Y. Suenaga. A trigonal prism-based method for hair image
generation. IEEE Computer Graphics and applications, 12(1):47{53, 1992.
[42] L. Xie and Z.-Q. Liu. A coupled hmm approach to video-realistic speech animation.
Pattern Recognition, 40(8):2325{2340, 2007.
53
[43] X. Xiong and F. De la Torre. Supervised descent method and its applications
to face alignment. In Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 532{539. IEEE, 2013.
[44] X. D. Yang, Z. Xu, J. Yang, and T. Wang. The cluster hair model. Graphical
Models, 62(2):85{103, 2000.
[45] Y. Yu. Modeling realistic virtual hairstyles. In Computer Graphics and Appli-
cations, 2001. Proceedings. Ninth Paci c Conference on, pages 295{304. IEEE,
2001.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *