|
[1] M. Anderson. Communication-Avoiding QR Decomposition for GPUs [2] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communica-tion-avoiding parallel and sequential QR factorizations. CoRR,arixv.org/abs/0806.2159, 2008 [3] Mahout Stochastic SVD Working Note, Mahout-376 [4] P. G. Constantine. Tall and Skinny QR factorizations in MapReduce archi-tectures. [5] A. R. Benson. Direct QR factorizations for tall-and-skinny matrices in MapReduce architectures. [6] K. Bosteels. Dumbo. http://projects.dumbotics.com/dumbo/, 2012. [7] MapReduce: Simplied Data Processing on Large Clusters [8] M. Snir and S. Graham, editors. Getting up to speed:The Future of Super-computing. National Research Council, 2004. 227 pages. [9] J. Demmel, slide of Communication-Avoiding Algorithms course. UC Berkley. [10] Apache Mahout Official Website. https://mahout.apache.org/ [11] Wikipedia - Recommender System. http://en.wikipedia.org/wiki/Recommender_system [12] Implement Map-reduce version of stochastic SVD - SSVD working notes: https://issues.apache.org/jira/browse/MAHOUT-376 [13] Ya-Fang Chang, Che-Rung Lee. MapReduce Implementations of Distributed Collaborative Based Recommendation System. [14] S. Owen, R. Anil, T. Dunning, e. friedman, Mahout in action. Manning Pub-lication Co., 2012. [15] N. Halko, Per-G. Martinsson, J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. [16] A. Rajaraman, J. Leskovec, J. D. Ullman. Mining of Massive Dataset. [17] Apache Hadoop Official Website. http://hadoop.apache.org/ [18] Apache Spark Official Website. https://spark.incubator.apache.org/ [19] M. Zaharia, M.f Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark: Cluster Computing with Working Sets. [20] Matrix-toolkits-java. https://github.com/fommil/matrix-toolkits-java. [21] JLAPACK package. http://www.netlib.org/java/f2j/. [22] MovieLens Web Site. http://grouplens.org/datasets/movielens/ [23] Netflix prize competition. [24] The Echo Nest Taste Profile Subset Web Site. http://labrosa.ee.columbia.edu/millionsong/tasteprofile [25] A. Gunawardana, G. Shani, L. Ungar. A Survey of Accuracy Evaluation Metrics of Recommendation Tasks. Journal of Machine Learning Research 10th (2009). pp. 2935~2962. [26] J. L. Herlocker et al. Evaluating Collaborative Filtering Recommender sys-tem. ACM Transactions on Information Systems, 2004. [27] B. Sarwar, G. Karypis, J. Konstan and J. Riedl. Analysis of Recommenda-tion Algorithms for E-Commerce. In Proceedings of the 2nd ACM Confer-ence on Electronic Commerce (EC’00). ACM. New York. pp. 258-295. [28] Introduction of Mahout Implementation of ALS Recommendation. https://mahout.apache.org/users/recommender/intro-als-hadoop.html [29] Y. Zhou, D. Wilkinson, R. Schreiber, R. Pan. Large-scale Parallel Collabo-rative Filtering for the Netflix Prize. HP Labs, 1501 Page Mill Rd, Palo Alto, CA, 94304. [30] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A set of level 3 basic linear algebra subprograms,” ACM Trans. Math. Softw., vol. 16, no. 1, pp. 1–17, Mar. 1990. [31] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, Google, Inc., OSDI, 2004. [32] Mahout Apache Official Website: Introduction to Item-Based Recommen-dations with Hadoop. https://mahout.apache.org/users/recommender/intro-itembased-hadoop.html [33] A Guide to Python Frameworks for Hadoop. http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/ [34] Introduction of Hadoop Streaming. http://hadoop.apache.org/docs/r1.2.1/streaming.html [35] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale Parallel Col-laborative Filtering for the Netflix Prize. In AAIM ’08, pages 337–348, Ber-lin, Heidelberg, 2008. Springer-Verlag. |