帳號:guest(18.222.7.151)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳柏醇
作者(外文):Wu, Po-Chun
論文名稱(中文):An Evaluation of Maximum Flow Algorithms in Distributed-Parallel Environment
論文名稱(外文):分散式平行環境中的最大流演算法評比
指導教授(中文):韓永楷
口試委員(中文):韓永楷
李哲榮
姚兆明
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:101062512
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:26
中文關鍵詞:最大流分散式環境
相關次數:
  • 推薦推薦:0
  • 點閱點閱:201
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
最大流問題是現今網路流理論中最根本的問題之一,近年來已有許多單一程序執行的最大流演算法被發表出來。然而,隨著分散式環境的日漸普及,分散式系統開始蓬勃發展。在這篇論文,我們將探討在一個同時有許多電腦平行運作的分散式環境中,如何快速地得到最大流。我們將實作並評比三個不同的最大流演算法,其中包括目前運算速度最快的Push Relabel演算法、在不同程序間的溝通行為上再進行優化的Push Relabel演算法、以及一個最近發表,專用於分散式環境上的最大流演算法。
The maximum flow problem is one of the most basic problems in network
flow theory. Many single-machine sequential algorithms are proposed over
the years. However, distributed environments are much more common nowadays.
In this thesis, our focus is to compute maximum flow on a distributed
environment, where each distributed group may contain multiple computers
running in parallel. We implement and evaluate three maximum-flow
algorithms, including the Push-Relabel algorithm (the best sequential algorithm),
a modified version of the Push-Relabel algorithm that is more
communication-aware, and a recently proposed algorithm by Chen et al. [1]
that is dedicated to run in a distributed environment.
1 Introduction 2
2 Model Assumptions 5
2.1 Distributed-Parallel Model . . . . . . . . . . . . . . . . . . . . 5
2.2 Distributed Graph . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Algorithms Review 8
3.1 Ford-Fulkerson and Edmonds-Karp . . . . . . . . . . . . . . . 8
3.2 Push-Relabel . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Maximum Flow via Graph Summary . . . . . . . . . . . . . . 10
3.3.1 The Preprocessing Step . . . . . . . . . . . . . . . . . . 10
3.3.2 The Evaluation Step . . . . . . . . . . . . . . . . . . . 13
4 Experiment 16
4.1 Input Graph Generation . . . . . . . . . . . . . . . . . . . . . 17
4.2 Algorithms to be Compared . . . . . . . . . . . . . . . . . . . 18
4.2.1 Push-Relabel . . . . . . . . . . . . . . . . . . . . . . . 19
i
4.2.2 Modified Push-Relabel . . . . . . . . . . . . . . . . . . 19
4.2.3 Maximum Flow via Graph Summary . . . . . . . . . . 19
4.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Influence by Communication . . . . . . . . . . . . . . . 20
4.3.2 Influence by the Number of Nodes . . . . . . . . . . . . 21
4.3.3 Influence by the Number of Groups . . . . . . . . . . . 22
4.3.4 Influence by the Number of Connecting Vertices . . . . 23
5 Conclusion 25
ii
[1] Y. M. Chen, P. C. Wu, and W. K. Hon. Maximum Flow via Graph
Summaries. Manuscript in preparation, 2014.
[2] T. H. Cormen, C. E. Leicerson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2009.
[3] J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems. Journal of the ACM, 19(2):248–
264, 1972.
[4] L. R. Ford and D. R. Fulkerson. Maximal Flow through a Network.
Canadian Journal of Mathematics, 8(3):399–404, 1956.
[5] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum-
Flow Problem. Journal of the ACM, 35(4):921–940, 1988.
26
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *