帳號:guest(18.227.134.45)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昱均
作者(外文):Chen, Yu-Chun
論文名稱(中文):整合式車輛與道路偵測及距離估測
論文名稱(外文):Integrated Vehicle and Lane Detection with Distance Estimation
指導教授(中文):賴尚宏
指導教授(外文):Lai, Shang-Hong
口試委員(中文):陳祝嵩
莊永裕
李潤容
口試委員(外文):Chu-Song Chen
Yung-Yu Chuang
Ruen-Rone Lee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:101062507
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:45
中文關鍵詞:高級駕駛員輔助系統行車偵測道路偵測距離評估
外文關鍵詞:Advanced Driver Assistance SystemVehicle DetectionLane DetectionDistance Estimation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:502
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
本篇論文提出一個行車駕駛輔助系統,系統中利用明顯相關資訊的流通,以合作的方式結合了車輛偵測、道路線偵測以及距離估測。
在行車駕駛輔助系統中行車偵測是一個很重要的議題。大多數現存的方法都是建構在sliding window的方式之上。然而,這種搜尋方式通常會有計算時間的問題以及容易造成較多的false positives,這是因為此種方法需要在影像中對所有位置使用不同大小的窗格去偵測。而我們利用路上的幾何透視關係去建構了一個高效能行車偵測方法,這種方式明顯地減少搜尋範圍。在訓練的過程中,我們利用HOG-based的行車偵測方式偵測少數幾張即時的影像去找尋有可能是行車的位置並且將這些車子視為行車候選人。接著將這些包含了幾何透視資訊的結果以配對方式計算出一個線性車寬模型。在此建構了一個利用線性車寬模型去推估的adaptive scan方法,這種方式是非常有效率的行車偵測方法。
這種經由學習的線性車寬模型提供了對道路線寬度以及畫面中水平線的限制。利用這些限制,道路線的搜尋範圍可以有效的減少。我們也對於畫面中所有可能為車道的線段使用local patch鑑定的方式去加強車道偵測的可靠性。此外,我們也對於由單眼相機擷取的影像提出了一個新穎的方法去評估距離。在我們的系統中利用已知道路線標記的關係來估測相機姿勢以及那些我們系統中偵測到車輛的距離。
從真實影像的實驗結果中顯示出,我們的系統在偵測行車與道路線以及估測前車距離上是相當穩定及準確的。結果也顯示出我們所提出來方法的精確性也比過去的方法還要來的準確。
This thesis proposes an Advanced Driver Assistance System (ADAS) that combines vehicle detection, lane detection, and distance estimation in a collaborative manner.
Vehicle detection is an important research problem for Advanced Driver Assistance Systems. Most existing methods are based on the sliding window search framework. However, such methods are computationally intensive and easily produce large numbers of false positives because they need to search local windows of different scales at all positions in the image. Our efficient vehicle detection approach dramatically reduces the search space based on the perspective geometry of the road. In the training phase, we locate all possible vehicle regions from several online images by using the standard HOG-based vehicle detector and treat them as vehicle candidates. Then, pairs of vehicle candidates that satisfy the projective geometry constraints are used to estimate a linear vehicle width model. Then an adaptive scan strategy based on the estimated vehicle width model is developed for efficient vehicle detection from an image.
The learned vehicle width model provides constraints on the horizon and the lane width at different locations in the image. By exploiting the above geometric constraints, the search space for lane detection can be significantly reduced. We employ local patch constraints along hypothesized lanes extracted from the image to improve the reliability of lane detection. Moreover, we propose a novel algorithm to estimate the vehicle distance from a single image captured form a monocular camera in real time. In our algorithm, we utilize lane prior information of dash lane geometry to estimate the camera pose and the distances to the detected vehicles.
Experimental results on real videos show that the proposed system is robust and accurate in terms of vehicle and lane detection as well as vehicle distance estimation from an image. We also show superior accuracies of vehicle and lane detection compared to the previous methods.
List of Figures.......................................III
List of Tables..........................................V
List of Algorithms.....................................VI
Chapter 1 Introduction..................................1
Chapter 2 Related Works.................................6
Chapter 3 Proposed Method..............................10
3.1. Efficient vehicle detection with adaptive scan based on perspective geometry...................................10
3.1.1. Vehicle width model with perspective geometry...11
3.1.2. Vehicle width estimation........................12
3.1.3. Adaptive scan with vehicle width model..........15
3.2. Patch-based identification for lane detection.....16
3.3. Vehicle distance estimation from a single image...19
Chapter 4 Experimental Result..........................25
4.1. Vehicle detection.................................26
4.2. Lane detection....................................29
4.3. Distance estimation...............................35
4.4. Summary...........................................38
Chapter 5 Conclusion...................................40
References.............................................42
[1] J.Wu and X. Zhang, “A pca classifier and its application in vehicle detection,” International Joint Conference on Neural Networks, 2001.
[2] C. Papageorgiou and T. Poggio, “A trainable system for object detection,” International Journal of Computer Vision, vol. 38, no. 1, pp. 15–33, 2000.
[3] Z. Sun, G. Bebis, and R. Miller, “Quantized wavelet features and support vector machines for on-road vehicle detection,” International Conference on Control, Automation, Robotics and Vision, 2002.
[4] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection using evolutionary gabor filter optimization,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 2, pp. 125 – 137, june 2005.
[5] M. Cheon, W. Lee, C. Yoon, and M. Park, “Vision-based vehicle detection system with consideration of the detecting location,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 3, pp. 1243 –1252, 2012.
[6] N. Srinivasa, “Vision-based vehicle detection and tracking method for forward collision warning in automobiles,” IEEE Intelligent Vehicle Symposium, 2002.
[7] D. Hoiem, A. A. Efros, and M. Hebert, “Putting objects in perspective,” IEEE Conference on Computer Vision and Pattern Recognition, 2006.
[8] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: a review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp. 694 –711, 2006.
[9] A. Borkar, M. Hayes, and M. T. Smith, “Robust lane detection and tracking with RANSAC and KALMAN filter,” IEEE International Conference on Image Processing (ICIP), 2009.
[10] A. Brokar, M. Hayes, and M. T. Smith, “A novel lane detection system with efficient ground truth generation,” IEEE Transaction on Intelligent Transportation Systems, VOL. 13, NO. 1, MARCH 2012.
[11] S. Zhou, Y. Jiang, J. Gong, G. Xiong, and H. Chen, “A novel lane detection based on geometrical model and gabor filter,” IEEE Intelligent Vehicle Symposium, 2010.
[12] Q. Lin, Y. Han, and H. Hahn, “Real-time lane detection Based on extended edge-linking algorithm,” Computer Research and Development, 2010.
[13] C. Wu, C. Lin, and C. Lee, “Applying a Functional Neurofuzzy Network to Real-Time Lane Detection and Front-Vehicle Distance Measurement,” IEEE Transaction on Systems, VOL. 42, NO. 4, JULY 2012.
[14] T. Muller, J. Rannacher, C. Rabe, and U. Franke, “Feature- and Depth-Supported Modified Total Variation Optical Flow for 3D Motion Field Estimation in Real Scenes,” IEEE Computer Vision and Pattern Recognition (CVPR), 2011.
[15] E. Dagan, O. Mano, G. P. Stein, and A. Shashua “Forward Collision Warning with a Single Camera,” Intelligent Vehicles Symposium, 2004.
[16] Z. Qing-Sen and M. Xie “Study on the Method of Measuring the Preceding Vehicle Distance Based on Trilinear Method,” Computer Modeling and Simulation, 2010.
[17] J. Kosecka and W. Zhang, “Video Compass,” Proceedings of European Conference on Computer Vision, pages 657 – 673, 2002.
[18] F. Moreno-Noguer, V. Lepetit and P. Fua, “EPnP: An Accurate O(n) Solution to the PnP Problem,” International Journal of Computer Vision, vol. 81, issue 2, pp 155-166, 2009.
[19] J. Arrospide, L. Salgado, and M. Nieto, “Video analysisbased vehicle detection and tracking using an mcmc sampling framework,” EURASIP Journal on Advances in Signal Processing, vol. 2012, pp. 1–20, 2012.
[20] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: A library for support vector machines,” ACM Transactions on Intelligent Systems and Technology.
[21] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection: Survey and experiments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 12, pp. 2179–2195, 2009.
[22] J. P. Lewis, “Fast Normalized Cross-Correlation,” Vision Interface, 1995.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *