帳號:guest(3.128.198.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王耀聲
作者(外文):Wang, Yao-sheng
論文名稱(中文):以系統觀點透過HIV與宿主間的互動網路來探究病毒致病過程與宿主的防衛機制
論文名稱(外文):Investigating the shift of host-pathogen crosstalk network mark to reveal the pathogenic and defense molecular mechanisms in the HIV infection process: systems biology approach via big data mining
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):藍忠昱
王慧菁
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061627
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:84
中文關鍵詞:HIV病毒-宿主互動網路
相關次數:
  • 推薦推薦:0
  • 點閱點閱:372
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
試圖了解HIV感染過程的致病機制與防禦機制,並幫助臨床病毒感染的控制,研究宿主-病原體物種間交互作用是一個非常重要的研究課題。在這項研究中,經由宿主的高通量定序資料(次世代定序NGS),病毒的RT-PCR資料以及後生miRNA資料及其他資訊,我們建構了宿主與病原體物種內與物種間蛋白質以及miRNA的交互作用(PPMI)網路在HIV的整個感染過程中。主要的PPMI網路被萃取出做為宿主 - 病原體串擾網絡在不同的HIV病毒感染階段。
經由分別比較不同HIV感染階段的宿主與病原體物種間串擾網路在HIV病毒感染細胞以及相對應的未感染的細胞中,宿主-病原體物種間串擾網路標記在各個HIV感染階段被萃取出。經由各個階段的宿主-病原體物種間串擾網路標記取交集,我們進一步找出共同的核心宿主 - 病原體串擾網絡標記在整個HIV感染階段。通過進一步調查這個共同的核心宿主 - 病原體串擾網絡標記的分子間交互作用以及病毒蛋白與宿主間交互作用的改變
我們可以得到更深入地了解艾滋病毒的發病機制和宿主的防禦機制。這可以提供新的藥物靶標設計方針並提高艾滋病的治療效率。
To investigate host-pathogen interspecies interactions is a very important research topic in attempts to understand pathogenic and defensive mechanisms in the HIV infection process and help control the clinic pathogenic infections. In this study, with the help of simultaneously two-sided time-course HIV-human high throughput sequencing data (next generation sequencing NGS), RT-PCR data, epigenetic miRNA data and other omic data, the interspecies protein-protein miRNA interaction (PPMI) network is constructed for host and pathogen interactions in the HIV infection process. Principal interspecies PPMI networks are extracted as host-pathogen crosstalk network at different stages of HIV infection process.
By comparing host-pathogen crosstalk networks in HIV infected cell with mock cell (without HIV infection) at different stages of HIV infection process respectively, host-pathogen crosstalk network markers at different infection stages are extracted. We further find the common core host-pathogen crosstalk network marker of the whole infection stage by the intersection of different stages host-pathogen crosstalk network markers. By further investigating this common core host-pathogen crosstalk network marker for molecular interaction shifting and viral proteins interaction in different HIV replication stages, we could get more insight into the pathologic mechanism of the HIV virus and the defense mechanism of human. This might offer the new way of drug target design for efficient therapies of AIDS.
Keywords: HIV; miRNA; AIDS; interspecies protein-protein miRNA interaction (PPMI) network; host-pathogen crosstalk network mark; pathological and defense mechanism
Content
ABTRACT i
INTRODUCTION 1
Chapter 2 7
Materials and Methods 7
2.1 Overview of construction framework for the interspecies PPMI network 7
2.2 Big Data mining and preprocessing 8
2.3 Selection of protein pool and construction of candidate interspecies protein-protein miRNA interaction (PPMI) network 9
2.4 Dynamic coupling model of host-pathogen interspecies PPMI network 10
2.5 Construction of PPMI network by system identification method and system order detection scheme 12
2.6 Determination of significant connection change proteins in PPMI network at different HIV infection stages via Differential score method 15
2.7 Find the common core host-pathogen crosstalk network marker 18
Chapter 3 23
Result 23
3.1 Functional analysis of core proteins in host-pathogen crosstalk network marker for each HIV replication stage 23
3.2Detailed analysis of common Core host-pathogen crosstalk network biomarker in different HIV infection stages 27
3.2-1 Core host-pathogen crosstalk network biomarker in the reverse transcription stage 28
3.2-2 Core host-pathogen crosstalk network biomarker in integration/replication stage 32
3.2-3 Core host-pathogen crosstalk network biomarker in the late stage 35
3.3 Specific host-pathogen crosstalk network biomarkers 40
3.3-1 Functional analysis of specific host-pathogen crosstalk network biomarker in the HIV reverses transcription stage 40
3.3-2 Functional analysis of specific host-pathogen crosstalk network biomarker in HIV integration/replication stage 42
3.3-3 Functional analysis of specific host-pathogen crosstalk network biomarker in the late stage of HIV infection process 44
3.4 Highlight the crosstalk between HIV virus and host 45
3.4-1 Functional analysis of crosstalks between host proteins and viral proteins in the integration/replication stage and late stages 45
3.4-2 The cellular roles of each viral protein at the HIV integration/replication stage 47
3.4-3 The cellular roles of each viral protein at the late stage 48
3.5 Identified multiple drug-targets 49
Chapter 4 51
Discussion 51
Chapter5 54
Conclusions 54
Supplementary 69
Rference

1. Pinney JW, Dickerson JE, Fu W, Sanders-Beer BE, Ptak RG, Robertson DL: HIV-host interactions: a map of viral perturbation of the host system. Aids 2009, 23(5):549-554.
2. Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, Macartney M, Mori J, Rickett G, Smith-Burchnell C, Napier C et al: Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Ch 2005, 49(11):4721-4732.
3. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ: Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008, 319(5865):921-926.
4. Konig R, Zhou YY, Elleder D, Diamond TL, Bonamy GMC, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE et al: Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 2008, 135(1):49-60.
5. Zhou HL, Xu M, Huang Q, Gates AT, Zhang XHD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ et al: Genome-Scale RNAi Screen for Host Factors Required for HIV Replication. Cell Host Microbe 2008, 4(5):495-504.
6. Bushman FD, Malani N, Fernandes J, D'Orso I, Cagney G, Diamond TL, Zhou HL, Hazuda DJ, Espeseth AS, Konig R et al: Host Cell Factors in HIV Replication: Meta-Analysis of Genome-Wide Studies. Plos Pathog 2009, 5(5).
7. Sun GH, Li HT, Wu XW, Covarrubias M, Scherer L, Meinking K, Luk B, Chomchan P, Alluin J, Gombart AF et al: Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res 2012, 40(5):2181-2196.
8. Mohammadi P, Desfarges S, Bartha I, Joos B, Zangger N, Munoz M, Gunthard HF, Beerenwinkel N, Telenti A, Ciuffi A: 24 Hours in the Life of HIV-1 in a T Cell Line. Plos Pathog 2013, 9(1).
9. Fu W, Sanders-Beer BE, Katz KS, Maglott DR, Pruitt KD, Ptak RG: Human immunodeficiency virus type 1, human protein interaction database at NCBI. Nucleic Acids Res 2009, 37:D417-D422.
10. Hsu PWC, Lin LZ, Hsu SD, Hsu JBK, Huang HD: ViTa: prediction of host microRNAs targets on viruses. Nucleic Acids Res 2007, 35:D381-D385.
11. Wang YC, Lin C, Chuang MT, Hsieh WP, Lan CY, Chuang YJ, Chen BS: Interspecies protein-protein interaction network construction for characterization of host-pathogen interactions: a Candida albicans-zebrafish interaction study. Bmc Syst Biol 2013, 7.
12. Johansson R: System modeling & identification. 1993.
13. Wang YC, Chen BS: Integrated cellular network of transcription regulations and protein-protein interactions. Bmc Syst Biol 2010, 4.
14. Bozzini S, Falcone V, Conaldi PG, Visai L, Biancone L, Dolei A, Toniolo A, Speziale P: Heparin-binding domain of human fibronectin binds HIV-1 gp120/160 and reduces virus infectivity. J Med Virol 1998, 54(1):44-53.
15. Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, Gavin BJ, Kley N, Kaelin WG, Iliopoulos O: The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1998, 1(7):959-968.
16. Yeung MC, Geertsma F, Liu J, Lau AS: Inhibition of HIV‐1 gp120‐induced apoptosis in neuroblastoma SK‐N‐SH cells by an antisense oligodeoxynucleotide against p53. Aids 1998, 12(4):349-354.
17. Kapasi AA, Fan SJ, Singhal PC: p300 modulates HIV-1 gp120-induced apoptosis in human proximal tubular cells: Associated with alteration of TGF-beta and Smad signaling. Nephron Exp Nephrol 2006, 102(1):E30-E38.
18. Kapasi AA, Fan SJ, Singhal PC: Role of 14-3-3 epsilon,c-Myc/Max, and Akt phosphorylation in HIV-1 gp 120-induced mesangial cell proliferation. Am J Physiol-Renal 2001, 280(2):F333-F342.
19. Furlini G, Vignoli M, Re MC, Gibellini D, Ramazzotti E, Zauli G, Laplaca M: Human-Immunodeficiency-Virus Type-1 Interaction with the Membrane of Cd4(+) Cells Induces the Synthesis and Nuclear Translocation of 70k Heat-Shock Protein. J Gen Virol 1994, 75:193-199.
20. Roe JS, Kim HR, Hwang IY, Ha NC, Kim ST, Cho EJ, Youn HD: Phosphorylation of von Hippel-Lindau protein by checkpoint kinase 2 regulates p53 transactivation. Cell Cycle 2011, 10(22):3920-3928.
21. Shah A, Kumar S, Simon SD, Singh DP, Kumar A: HIV gp120-and methamphetamine-mediated oxidative stress induces astrocyte apoptosis via cytochrome P450 2E1. Cell Death Dis 2013, 4.
22. Bakhanashvili M, Novitsky E, Lilling G, Rahav G: P53 in cytoplasm may enhance the accuracy of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. Oncogene 2004, 23(41):6890-6899.
23. Al-Harthi L: Interplay Between Wnt/beta-Catenin Signaling and HIV: Virologic and Biologic Consequences in the CNS. J Neuroimmune Pharm 2012, 7(4):731-739.
24. Sun Y, Clark EA: Expression of the c-myc proto-oncogene is essential for HIV-1 infection in activated T cells. J Exp Med 1999, 189(9):1391-1397.
25. Wood MA, McMahon SB, Cole MD: An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell 2000, 5(2):321-330.
26. Naji S, Ambrus G, Cimermancic P, Reyes JR, Johnson JR, Filbrandt R, Huber MD, Vesely P, Krogan NJ, Yates JR et al: Host Cell Interactome of HIV-1 Rev Includes RNA Helicases Involved in Multiple Facets of Virus Production. Mol Cell Proteomics 2012, 11(4).
27. Tang Y, Luo JY, Zhang WZ, Gu W: Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 2006, 24(6):827-839.
28. Cooper A, Garcia M, Petrovas C, Yamamoto T, Koup RA, Nabel GJ: HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature 2013, 498(7454):376-+.
29. Fankhauser C, Izaurralde E, Adachi Y, Wingfield P, Laemmli UK: Specific Complex of Human-Immunodeficiency-Virus Type-1 Rev and Nucleolar B23 Proteins - Dissociation by the Rev Response Element. Mol Cell Biol 1991, 11(5):2567-2575.
30. Dundr M, Leno GH, Hammarskjold ML, Rekosh D, Helgamaria C, Olson MOJ: The Roles of Nucleolar Structure and Function in the Subcellular Location of the Hiv-1 Rev Protein. J Cell Sci 1995, 108:2811-2823.
31. Janvier K, Pelchen-Matthews A, Renaud JB, Caillet M, Marsh M, Berlioz-Torrent C: The ESCRT-0 Component HRS is Required for HIV-1 Vpu-Mediated BST-2/Tetherin Down-Regulation. Plos Pathog 2011, 7(2).
32. Kim MY, Oglesbee M: Virus-Heat Shock Protein Interaction and a Novel Axis for Innate Antiviral Immunity. Cells 2012, 1(3):646-666.
33. Zilfou JT, Hoffman WH, Sank M, George DL, Murphy M: The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol Cell Biol 2001, 21(12):3974-3985.
34. Stolp B, Fackler OT: How HIV Takes Advantage of the Cytoskeleton in Entry and Replication. Viruses-Basel 2011, 3(4):293-311.
35. Sripada S, Dayarai C: Viral interactions with intermediate filaments: Paths less explored. Cell Health and Cytoskeleton 2010, 2:1-7.
36. Lake JA, Carr J, Feng F, Mundy L, Burrell C, Li P: The role of Vif during HIV-1 infection: interaction with novel host cellular factors. J Clin Virol 2003, 26(2):143-152.
37. Karczewski MK, Strebel K: Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein. J Virol 1996, 70(1):494-507.
38. Barrero CA, Datta PK, Sen S, Deshmane S, Amini S, Khalili K, Merali S: HIV-1 Vpr Modulates Macrophage Metabolic Pathways: A SILAC-Based Quantitative Analysis. Plos One 2013, 8(7).
39. Groschel B, Bushman F: Cell cycle arrest in G(2)/M promotes early steps of infection by human immunodeficiency virus. J Virol 2005, 79(9):5695-5704.
40. Navare AT, Sova P, Purdy DE, Weiss JM, Wolf-Yadlin A, Korth MJ, Chang ST, Proll SC, Jahan TA, Krasnoselsky AL et al: Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: Protein synthesis, cell proliferation, and T-cell activation. Virology 2012, 429(1):37-46.
41. Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA: Hiv-1 Replication Is Controlled at the Level of T-Cell Activation and Proviral Integration. Embo J 1990, 9(5):1551-1560.
42. Ivanov AA, Khuri FR, Fu HA: Targeting protein-protein interactions as an anticancer strategy. Trends Pharmacol Sci 2013, 34(7):393-400.
43. Chang ST, Sova P, Peng XX, Weiss J, Law GL, Palermo RE, Katze MG: Next-Generation Sequencing Reveals HIV-1-Mediated Suppression of T Cell Activation and RNA Processing and Regulation of Noncoding RNA Expression in a CD4(+) T Cell Line. Mbio 2011, 2(5).
44. Li QS, Smith AJ, Schacker TW, Carlis JV, Duan L, Reilly CS, Haase AT: Microarray Analysis of Lymphatic Tissue Reveals Stage-Specific, Gene Expression Signatures in HIV-1 Infection. J Immunol 2009, 183(3):1975-1982.
45. Bosinger SE, Hosiawa KA, Cameron MJ, Persad D, Rang LS, Xu LL, Boulassel MR, Parenteau M, Fournier J, Rud EW et al: Gene expression profiling of host response in models of acute HIV infection. J Immunol 2004, 173(11):6858-6863.
46. Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K et al: Global landscape of HIV-human protein complexes. Nature 2012, 481(7381):365-370.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *