帳號:guest(18.191.140.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱筠惠
作者(外文):Chiu, Yun-Hui
論文名稱(中文):具有頻率變換磁性生醫感測器的鎖相迴路
論文名稱(外文):Phase Locked Loop with Frequency-shift Magnetic Biosensor
指導教授(中文):朱大舜
指導教授(外文):Chu, Ta-Shun
口試委員(中文):王毓駒
吳仁銘
口試委員(外文):Wang, Yu-Jiu
Wu, Jen-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061624
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:82
中文關鍵詞:鎖相迴路磁性生醫感測器三角積分調變器
外文關鍵詞:phase locked loopmagnetic biosensorsigma-delta modulator
相關次數:
  • 推薦推薦:0
  • 點閱點閱:212
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文提出了一個具有感測振盪器和參考振盪器的差別感測架構。這兩個振盪器分別置放在兩個相同的鎖相迴路裡,並藉由LC 振盪頻率的變化來判斷感測的程度,其中感測振盪器的頻率變化正比於在感測器表面存在的磁性粒子總量。同時,感測振盪器的頻率變化導致了電流泵的輸出電壓變化並跟參考振盪器作比較。它們的電壓差當作三角積分類比數位轉換器的輸入,也就是說我們可以直接透過三角積分類比數位轉換器的輸出位元流來得知磁性粒子的數量。另外,具有差別感測架構的鎖相迴路是由另一個鎖相迴路來提供參考頻率,這是因為可調的頻率範圍很小的關係。此外,在本論文中所採用的“三明治”法需要在感測器表面覆蓋一層薄膜來固定磁性粒子和生物目標分子於其上。另一方面,在本篇論文中採用除2/除3 的除頻器架構和三角積分調變器來完成的分數型鎖相迴路來達成寬頻合成範圍。但很不幸地是,在分數型鎖相迴路輸出訊號的突波是不可避免的。傳統的設計只能跟其他方面的表現做取捨,在本論文中則是利用抖動的方式來消除輸出頻譜產生的突波。在三角積分調變器方面,為了避免電路的不穩定,採用多級雜訊整形架構。本文中的生物感測架構使用TSMC 0.18μm1P6M CMOS process 來完成晶片,並供應1.8V 的電壓。總的來說,此具有磁性生醫感測器架構的鎖相迴路可以達到高敏感度與高可攜度,而且不需要再另外產生偏壓磁場。
This thesis presents a differential sensing scheme used by paring a sensing oscillator with a reference oscillator. The oscillators are placed respectively in two identical phase-locked loops with ultrasensitive frequency-shift magnetic
biosensing scheme based on on-chip LC resonance. The frequency-shift of the sensing oscillator is proportional to the amount of magnetic particles present in the active volume of a sensor's surface. Moreover, the frequency-shift from the sensing oscillator results in the variation of charge pump output voltage that is compared to the reference one. Their voltage difference is taken as the input
of the sigma-delta ADC whcih means we could derive the quantity of magnetic particles straightly through the output bitstream of the sigma-delta ADC. Furthermore, the reference frequency
of the PLL with a differential sensing scheme is provided by another PLL due to the tuning range is small. Additionally, the “sandwich”method adopted in this thesis requires a specific coating of the sensor's surface to immobilize magnetic beads and biological targets on top of the sensor. On the other hand, the PLL in this thesis has 2/3 cell
divider architecture and sigma-delta modulator to attain a wide bandwidth. Unfortunately, spurious tones are inevitable in the output signals of PLL. Instead of conventional designs which can be attenuated only with design tradeoffs that degrade other aspects of performance, the dithering technique is employed to the sigma-delta modulator to lower the spurious tone in the PLL output signals. In sigma-delta modulator, the Multi stAge noise SHaping (MASH) architecture is introduced to avoid the circuit unstable. The proposed biosensing scheme is implemented under TSMC 0.18μm 1P6M CMOS process supplying 1.8V voltage. Overall, the magnetic sensing scheme on PLL achieves high sensitivity and portability without any externally generated magnetic biasing fields.
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV
List of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI
List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
List of Figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X
Chapter 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Chapter 2 Magnetic biosensor concept . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 SAM (Self-Assembled Monolayer) . . . . . . . . . . . . . . . . 3
2.2 DNA immobilization . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Sandwich assays . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 3 Phase locked loop function blocks design. . . . . . . . . . . . . . . . . 10
3.1 PLL overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 PFD (Phase-Frequency Detector) . . . . . . . . . . . . . . . . . 12
3.3 CP (Charge Pump) . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 LF (Loop Filter) . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 VCO (Voltage-Controlled Oscillator) . . . . . . . . . . . . . . . 21
3.6 Frequency dividers . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Fractional-N synthesizer . . . . . . . . . . . . . . . . . . . . . 31
3.8 Dithering modulator . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9 PLL analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Chapter 4 Proposed magnetic biosensing scheme on PLL . . . . . . . . . . . . . 47
4.1 Magnetic biosensor . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Voltage-controlled oscillator . . . . . . . . . . . . . . . . . . . 51
4.3 Fractional-N dividers . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Tri-state phase frequency detector . . . . . . . . . . . . . . . . 60
4.5 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Chapter 5 Simulation Results and Comparison . . . . . . . . . . . . . . . . . . . . 64
5.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.1 PFD (Phase-Frequency Detector) . . . . . . . . . . . . 64
5.1.2 CP (Charge Pump) . . . . . . . . . . . . . . . . . . . . 66
5.1.3 Divider . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.4 VCO (Voltage-controlled oscillator) . . . . . . . . . . . 71
Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
[1] L. Xu, H. Yu, S. J. Han, S. Osterfeld, R. L. White, N. Pourmand, and
S. X. Wang, ``Giant magnetoresistive sensors for dna microarray,'' IEEE
Transactions on Magnetics, vol. 44, no. 11, pp. 3989--3991, 2008.
[2] D. R. Baselt, G. U. Lee, M. Natesan, S. Metzger, P. E. Sheehan, and R. J.
Colton, ``A biosensor based on magnetoresistance technology,'' Journal of
Biosensors and Bioelectronics, vol. 13, pp. 731--739, 1998.
[3] R. S. Gaster, L. Xu, S. J. Han, R. J. Wilson, D. A. Hall, S. J. Osterfeld,
H. Yu, and S. X. Wang, ``Quantification of protein interactions and solution
transport using high-density gmr sensor arrays,'' Journal of Nature
Nanotechnology, vol. 6, pp. 314--320, 2011.
[4] B. Srinivasan, Y. Li, Y. Jing, Y. Xu, X. Yao, C. Xing, and J. P. Wang,
``A detection system based on giant magnetoresistive sensors and highmoment
magnetic nanoparticles demonstrates zeptomole sensitivity: Potential
for personalized medicine,'' Journal of Angewandte Chemie International
Edition, vol. 48, pp. 2764--2767, 2009.
[5] J. Loureiro, C. Fermon, M. Pannetier-Lecoeur, G. Arrias, R. Ferreira,
S. Cardoso, and P. P. Freitas, ``Magnetoresistive detection of magnetic beads flowing at high speed in microfluidic channels,'' IEEE Transactions
on Magnetics, vol. 45, no. 10, pp. 4873--4876, 2009.
[6] S. Han, H. Yu, B. Murmann, N. Pourmand, and S. X. Wang, ``A highdensity
magnetoresistive biosensor array with drift-compensation mechanism,''
IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), pp. 168--169, 2007.
[7] G. Li, V. Joshi, R. L. White, G. X. Wang, J. T. Kemp, C. Webb, R. W. Davis,
and S. Sun, ``Detection of single micron-sized magnetic bead and magnetic
nanoparticles using spin valve sensors for biological applications,'' Journal
of Applied Physics, vol. 93, no. 10, pp. 7557--7559, 2003.
[8] P. Besse, G. Boero, M. Demierre, V. Pott, and R. Popovic, ``Detection
of a single magnetic microbead using a miniaturized silicon hall sensor,''
Journal of Applied Physics, vol. 80, no. 22, pp. 4199--4201, 2002.
[9] Y. Liu, N. Sun, H. Lee, R. Weissleder, and D. Ham, ``Cmos mini nuclear
magnetic resonance system and its application for biomolecular sensing,''
IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pp. 140--141, 2008.
[10] W. C. Bigelow, D. L. Pickett, and W. A. Zisman, ``Oleophobic monolayers
i. films adsorbed from solution in non-polar liquids,'' Journal of Colloid
Science, vol. 1, pp. 513--538, 1946.
[11] R. G. Nuzzo and D. L. Allara, ``Adsorption of bifunctional organic disulfides
on gold surfaces,'' Journal of the American Chemical Society, vol.
105, no. 13, pp. 4481--4483, 1983.
[12] D. S. Kim, Y. T. Jeong, H. Y. Park, J. K. Shin, P. Choi, J. H. Lee, and
G. Lim, ``An fet-type charge sensor for highly sensitive detection of dna
sequence,'' Journal of Biosensors and Bioelectronics, vol. 20, pp. 69--74,
2004.
[13] E. J. Hernandez and A. D. Sanchez, ``Positive feedback cmos charge-pump
circuits for pll applications,'' IEEE International Midwest Symposium on
Circuits and Systems (MWSCAS), vol. 2, pp. 836--839, 2001.
[14] H. M. S. Fazeel, L. Raghavan, C. Srinivasaraman, and M. Jain, ``Reduction
of current mismatch in pll charge pump,'' IEEE Computer Society Annual
Symposium on VLSI, pp. 7--12, 2009.
[15] S. Cheng, H. Tong, J. Silva-Martinez, and A. I. Karsilayan, ``Design and
analysis of an ultrahigh-speed glitch-free fully differential charge pump
with minimum output current variation and accurate matching,'' IEEE
Transactions on Circuits and Systems II, Express Briefs, vol. 53, no. 9,
pp. 843--847, 2006.
[16] C.-N. Chuang and S.-L. Liu, ``A 0.5 5ghz wide-range multiphase dll with
a calibrated charge pump,'' IEEE Transactions on Circuits and Systems II, Express Briefs, vol. 54, no. 11, pp. 939--943, 2007.
[17] S. L. J. Gierkink, ``Low-spur, low-phase-noise clock multiplier based on
a combination of pll and recirculating dll with dual-pulse ring oscillator
and self-correcting charge pump,'' IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), vol. 43, no. 12, pp. 2967-
-2976, 2008.
[18] C.-L. Ti, Y.-H. Liu, and T.-H. Lin, ``A 2.4-ghz fractional-n pll with a pfd/cp
linearization and an improved cp circuit,'' IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1728--1731, 2008.
[19] J. Lee and B. Kim, ``A low-noise fast-lock phase-locked loop with adaptive
bandwidth control,'' IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), vol. 35, pp. 1137--1145, 2002.
[20] Y. A. Eken and J. P. Uyemura, ``A 5.9-ghz voltage-controlled ring oscillator
in 0.18 μm cmos,'' IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), vol. 39, no. 1, pp. 230--233, 2004.
[21] C. S. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegeli, and
Z. Wang, ``A family of low-power truly modular programmable dividers
in standard 0.35-um cmos technology,'' IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), vol. 35, no. 7,
pp. 1039--1046, 2000.
[22] Y. C. Liu, W. Z. Chen, M. H. Chou, T. H. Tsai, Y. W. Lee, and M. S.
Yuan, ``A 0.1-3ghz cell-based fractional-n all digital phase-locked loop
using ΔΣ noise-shaped phase detector,'' IEEE Custom Integrated Circuits
Conference (CICC), pp. 1--4, 2013.
[23] M. H. Perrott, M. D. Trott, and C. G. Sodini, ``A modeling approach
for Σ-Δ fractional-n frequency synthesizers allowing straightforward noise
analysis,'' IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), vol. 37, pp. 1028--1038, 2002.
[24] T. A. Riley, M. A. Copeland, and T. A. Kwasniewski, ``Delta–sigma modulation
in fractional-n frequency synthesis,'' IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), vol. 28, pp. 553-
-559, 1993.
[25] B. Miller and B. Conley, ``A multiple modulator fractional divider,'' IEEE
Transactions on Instrumentation and Measurement (TIM), vol. 40, pp. 578-
-583, 1991.
[26] S. Pamarti and I. Galton, ``Lsb dithering in mash delta-sigma d/a converters,''
IEEE Transactions on Circuits and Systems I, Regular Papers, vol. 54,
no. 4, pp. 779--790, 2007.
(此全文未開放授權)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *