帳號:guest(18.216.204.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪國峰
作者(外文):Hong, Guo-Feng
論文名稱(中文):適用於即時人體呼吸訊號萃取之整合超寬頻雷達訊號處理平台
論文名稱(外文):An Integrated UWB Radar Signal Processing System for Real-Time Human Respiratory Feature Extraction
指導教授(中文):黃元豪
指導教授(外文):Huang, Yuan-Hao
口試委員(中文):黃柏鈞
吳仁銘
朱大舜
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061623
出版年(民國):103
畢業學年度:103
語文別:中文
論文頁數:59
中文關鍵詞:超寬頻即時呼吸特徵萃取
外文關鍵詞:UWBReal-timeRespiratory Feature Extraction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:403
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
此篇研究是介紹如何整合出適用於即時人體呼吸訊號萃取之超寬頻雷達訊號處理平台,主要內容在於各項介面設計,包含軟體Virtual C++與軟體MATLAB、軟體Virtual C++與硬體FPGA開發版、硬體FPGA開發版與硬體雷達晶片之間的溝通,內容一開始會介紹即時人體呼吸訊號偵測所採用的雷達晶片規格,以及即時人體呼吸訊號萃取所使用的演算法及呼吸波形,再來才說明不同的軟硬體工具之間的資料傳輸介面要如何設計,以達成即時訊號處理,包含軟體程式Virtual C++與FPGA上的硬體電路是如何透過FIFO做資料交換,它們之間資料傳遞的時序圖、Virtual C++呼叫MATLAB的繪圖功能,要對專案進行那些設定、還有FPGA的硬體應用電路如何與雷達晶片做溝通,以及兩者之間的時序圖。最後呈現我們的量測結果,用示波器來觀察FPGA開發板及雷達晶片之間的傳遞訊號,再用電腦展現即時呼吸訊號的偵測及呼吸特徵的萃取,還有我們帶到醫院去做量測的實際成果。
1 簡介
1.1 背景知識
1.2 超寬頻雷達系統
1.3 研究動機
1.4 論文架構
2 超寬頻雷達訊號處理系統
2.1 雷達前端晶片 (Radar Front-end Chip)[1]
2.1.1 數位時間轉換器 (Digital-to-Time Converter DTC)
2.1.2 接收端 (Receiver)
2.1.3 傳送端 (Transmitter)
2.2 呼吸訊號特徵萃取演算法 [2]
2.2.1 人體呼吸模型 -四段線性波模型
2.2.2 線性調頻 Z 轉換 (Chirp-Z Transform)
2.2.3 迴圈相關性搜尋演算法 (Iterative Correlation Search Algorithm)
3 提出的超寬頻雷達訊號處理平台 (Proposed UWB Radar Signal Processing
System)
3.1 整合雷達系統介紹 (Introduction of the Integrated Radar System)
3.2 介面 (Interfacing)
3.2.1 電腦與 FPGA 之間的介面溝通 (Interfacing between Computer and FPGA)
3.2.2 FPGA 與超寬頻雷達晶片之間的介面溝通 (Interfacing between FPGA and UWB Radar Chip)
3.3 整合 (Integration)
iv 目錄
3.3.1 硬體實現 (Hardware Implementation)
3.3.2 軟體實現 (Software Implementation)
4 實現結果 (Implementation Result)
4.1 量測結果 (Measurement Results)
4.2 整合超寬頻雷達系統的模擬結果 (Demonstration of the Integrated UWB System)
4.3 醫院實測結果
5 結論及未來發展
[1] S.-C. C. J.-Y. L. G.-F. H. C.-H. H. Y.-H. H. S.-Y. H. Yu-Hsien Kao, Chun-Chieh Peng
and T.-S. Chu, “A direct-sampling impulse radar with all-digital timing circuitry in
65nm cmos,” in Department of Electrical Engineering, National Tsing-Hua
University, Hsinchu, Taiwan, 2014.
[2] P. Y.-H. H. Yu-Fang Chiu, “A low-comolexity uwb-radar signal processing system for
real-time human respiratory feature extraction,” in Department of Electrical Engineering,
National Tsing-Hua University, Hsinchu, Taiwan, Spe 102, pp. 12–
31.
[3] “Verienterprise vex-s150 hardware reference manual,” in SMIMS Technology Corporation,
Aug 2011, pp. 43–48, 60.
[4] C. Caro and J. Bloice, “Contactless apnoea detector based on radar,” in Lancet, vol.
2(7731), Oct. 1971, pp. 959–961.
[5] B. B. C. Franks and D. Johnston, “Contactless respiration monitoring of infants,” in
Med. Biol. Eng, vol. 14(3), Oct. 1976, pp. 306–318.
[6] B. B. C. Franks, J. Watson and E. Foster, “Respiratory pattems and risk of sudden
unexpected death in infancy,” in Arch. Dis. Child, vol. 55(8), Aug. 1980, pp. 595–604.
[7] E. Staderini, “Uwb radars in medicine,” in Aerospace and Electronic Sytems Magazine,
IEEE, vol. 17, no. 1, Jan. 2002, pp. 13–18.
[8] E. S. A. S. G. Ossberger, T. Buchegger and R. Weigel, “Non-invasive respiratory movement
detection and monitoring of hidden humans using ultra wideband pulse radar,” in
IEEE International Workshop on ULTRA Wideband Systems, Joint with
Conference on Ultrawideband Systems and Technilogies, May 2004.
[9] N. R. S. Venkatesh, C. Anderson and R. Buehrer, “Implementation and analysis of
respiration-rate estimation using impulse-based uwb,” in IEEE Military Communication
Conference, Oct. 2005.
[10] I. Immoreev and T. Tao, “Uwb radar for patient monitoring,” in Aerospace and Electronic
Sytems Magazine, IEEE, vol. 23, no. 11, Nov. 2008, pp. 11–18.
[11] G. S. Chung, B. H. Choi, K. K. Kim, Y. G. Lim, J. W. Choi, D.-U. Jeong, and K. S.
Park, “Rem sleep classification with respiration rates,” in Proc. 6th Int. Special
Topic Conf. Inf. Tech. Applicat. Biomedicine, Nov. 2007, pp. 194–197.
[12] S. I. Ivashov, V. V. Razevig, A. P. Sheyko, and I. A. Vasilyev, “Detection of human
breathing and heartbeat by remote radar,” in Proc. Progress Electromagnetics
Research Symp., Pisa, Italy, Mar. 2004.
[13] Z. Yong-Shun, K. Lingjiang, C. Guo-Long, and Y. Jian-Yu, “Remote sensing of human
body by stepped-frequency continuous-wave,” in Conf. Rec. 3rd Int. Conf. Bioinformatics
Biomedical Eng., June 2009, pp. 1–4.
[14] A. Lazaro, D. Girbau, R. Villarino, and A. Ramos, “Vital signs monitoring using impulse
based uwb signal,” in Conf. Rec. 41th EuMC, Oct. 2011, pp. 135–138.
[15] M. Chia, S. Leong, C. Sim, and K. Chan, “Through-wall uwb radar operating within
fcc’s mask for sensing heart beat and breathing rate,” in Proc. European Microw.
Conf., vol. 3, Oct. 2005, pp. 267–270.
[16] M. Baboli, S. Ghorashi, N. Saniei, and A. Ahmadian, “A new wavelet based algorithm
for estimating respiratory motion rate using uwb radar,” in Proc. ICBPE, Dec. 2009,
pp. 1–3.
[17] M. Leib, W. Menzel, B. Schleicher, and H. Schumacher, “Vital signs monitoring with a
uwb radar based on a correlation receiver,” in Proc. Rec. 4th EuCAP, April 2010,
pp. 1–5.
[18] M. Baboli, A. Sharafi, A. Ahmadian, and M. Nambakhsh, “An accurate and robust
algorithm for detection of heart and respiration rates using an impulse based uwb signal,”
in Proc. ICBPE, Dec. 2009, pp. 1–4.
[19] B. Oneda, K. C. Ortega, J. L. Gusmao, T. G. Araujo, and D. M. Jr., “Sympathetic nerve
activity is decreased during device-guided slow breathing,” in Hypertens Research,
Dec. 2010, pp. 708–712.
[20] P. A. Derchak, A. W. Sheel, B. J. Morgan, D. F. Pegelow, and J. A. Dempsey, “Effects
of expiratory muscle work on muscle sympathetic nerve activity,” in J. Applied
Physiology, 2002.
[21] Y.-F. C. T.-S. C. Chi-Hsuan Hsieh, Yi-Hsiang Shen and Y.-H. Huang, “Human respiratory
feature extraction on an uwb radar signal processing platform,” in Circuits and
Systems (ISCAS), 2013 IEEE International Symposium on, May 2013, pp.
1079–1082.
[22] P.-C. H. T.-S. C. Chang-Ming Lai, Jen-Ming Wu, “A scalable direct-sampling broadband
radar receiver supporting simultaneous digital multibeam array in 65nm cmos,” in IEEE
International Solid-State Circuits Conference, Feb 2013, pp. 242 – 243.
[23] S.-Y. H. S. M. I. C.-C. W. Pei-Ying Chao, Chao-Wen Tzeng and S.-C. Fang, “Processresilient
low-jitter all-digital pll via smooth code-jumping,” in IEEE TRANSACTIONS
ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS,
vol. 21, no. 12, Dec 2013, pp. 1–10.
[24] Y.-F. C. T.-S. C. Chi-Hsuan Hsieh, Yi-Hsiang Shen and Y.-H. Huang, “Human respiratory
feature extraction on an uwb radar signal processing platform,” in Circuits and
Systems (ISCAS), 2013 IEEE International Symposium on, May 2013, pp.
1079–1082.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *