|
參考文獻 [1] J. W. Gardner, Handbook of Machine Olfaction. WILEY-VCH, 2003. [2] K. Persaud and G. Dodd, “Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose,” Nature, vol. 299, pp. 352–355, 1982. [3] H.V. Shurmer, “An electronic nose: a sensitive and discriminating substitute for a mammalian olfactory system,” IEE Proc. G Circuits, Devices Syst., vol. 137, pp. 197–204, 1990. [4] J. W. Gardner and P. N. Bartlett, “A brief history of electronic noses,” Sensors Actuators B Chem., vol. 19, pp. 211–220, 1994. [5] P. C. Jain and R. Kushwaha, “Wireless gas sensor network for detection and monitoring of harmful gases in utility areas and industries,” 2012 Sixth Int. Conf. Sens. Technol., pp. 642–646, 2012. [6] 鄭桂忠, 施崇鴻, 王立群, 陳新, 劉奕汶, 徐爵民, 楊家銘, and 饒達仁, 「以電子鼻系統晶片早期預測及同步診斷使用人工呼吸器病患的肺炎菌種」, 國科會計畫 NSC 101-2220-E-007 -0062012. [7] D. W. Ballantine, R. M. White, and S. J. Martin, Acoustic Wave Sensors, Theory Design and Physico-Chemical Applications. Academic Press, 1997. [8] P. Hauptmann, Sensors-Principles and Applications. Carl Hanser Verlag & Prentice Hall, pp. 115–153, 1993. [9] J. W. Gardner, Microsensors-Principles and Applications. John Wiley & Sons, pp. 224–246, 1994. [10] J. W. Gardner and P. N. Bartlett, E-noses-Principles and Applications. Oxford, pp. 67–100, 1999. [11] K. Toko, Biomimetic Sensor Technology. Cambridge University Press, pp. 92–111, 2000. [12] W Göpel, H. J., and Z. J.N, Sensors: A Comprehensive Survey. VCH Verlagsgesellschaft GmbH, Weinheim, Germany, 1991. [13] “Figaro Sensor.” [Online]. Available: http://www.figarosensor.com/. [14] N. Barsan, D. Koziej, and U. Weimar, “Metal oxide-based gas sensor research: How to?,” Sensors Actuators B Chem., vol. 121, no. 1, pp. 18–35, Jan. 2007. [15] G. Eranna, Metal Oxide Nanostructures as gas sensing devices. CRC Press, 2012. [16] R. Gutierrez-Osuna, “Pattern analysis for machine olfaction: a review,” IEEE Sens. J., vol. 2, no. 3, pp. 189–202, Jun. 2002. [17] S. Marco and A. Gutiérrez-gálvez, “Signal and Data Processing for Machine Olfaction and Chemical Sensing : A Review,” vol. 12, no. 11, pp. 3189–3214, 2012. [18] 許柏安, 「快速混合氣體辨識方法之研究」, 國立清華大學資訊工程研究所, 碩士論文, 2012. [19] 王家銘, 「利用樣式識別實現電子鼻肺炎偵測」, 國立清華大學電機工程研究所, 碩士論文, 2013. [20] A. Fort, N. Machetti, S. Rocchi, M. B. Serrano Santos, L. Tondi, N. Ulivieri, V. Vignoli, and G. Sberveglieri, “Tin oxide gas sensing: Comparison among different measurement techniques for gas mixture classification,” IEEE Trans. Instrum. Meas., vol. 52, no. 3, pp. 921–926, Jun. 2003. [21] F. J. Acevedo, S. Maldonado, E. Domínguez, a. Narváez, and F. López, “Probabilistic support vector machines for multi-class alcohol identification,” Sensors Actuators B Chem., vol. 122, no. 1, pp. 227–235, Mar. 2007. [22] A. Vergara, E. Martinelli, E. Llobet, F. Giannini, A. D’Amico, and C. Di Natale, “An alternative global feature extraction of temperature modulated micro-hotplate gas sensors array using an energy vector approach,” Sensors Actuators B Chem., vol. 124, no. 2, pp. 352–359, Jun. 2007. [23] M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom., vol. 17, no. 3, pp. 166–173, Mar. 2003. [24] C. Distante, N. Ancona, and P. Siciliano, “Support vector machines for olfactory signals recognition,” Sensors Actuators B Chem., vol. 88, no. 1, pp. 30–39, Jan. 2003. [25] M. Pardo and G. Sberveglieri, “Classification of electronic nose data with support vector machines,” Sensors Actuators B Chem., vol. 107, no. 2, pp. 730–737, Jun. 2005. [26] M. K. Muezzinoglu, A. Vergara, R. Huerta, and M. I. Rabinovich, “A sensor conditioning principle for odor identification,” Sensors Actuators B Chem., vol. 146, no. 2, pp. 472–476, Apr. 2010. [27] C. Chang and C. Lin, “LIBSVM : A Library for Support Vector Machines,” pp. 1–39, 2013. [28] M. K. Muezzinoglu, A. Vergara, R. Huerta, N. Rulkov, M. I. Rabinovich, A. Selverston, and H. D. I. Abarbanel, “Acceleration of chemo-sensory information processing using transient features,” Sensors Actuators B Chem., vol. 137, no. 2, pp. 507–512, Apr. 2009. [29] F. Tai and H. Lin, “Multilabel Classification with Principal Label Space,” vol. 2542, pp. 2508–2542, 2012. [30] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for multi-label classification,” Mach. Learn., vol. 85, no. 3, pp. 333–359, Jun. 2011. [31] E. Alpaydm, Introduction to Machine Learning, Second Edi. The MIT Press, 2010. [32] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemom. Intell. Lab. Syst., vol. 2, no. 1–3, pp. 37–52, Aug. 1987. [33] J. Ye, “Least squares linear discriminant analysis,” Proc. 24th Int. Conf. Mach. Learn. - ICML ’07, pp. 1087–1093, 2007. [34] J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Min. Knowl. Discov., vol. 2, pp. 121–167, 1998. [35] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. Wiley, 2001. [36] P. Geladi and B. R. Kowalski, “Partial Least-Squares Regression: A Tutorial,” Anal. Chim. Acta, vol. 185, pp. 1–17, 1986. [37] S. de Jong, “SIMPLS: An alternative approach to partial least squares regression,” Chemom. Intell. Lab. Syst., vol. 18, no. 3, pp. 251–263, Mar. 1993. [38] D. M. Magerman, “Statistical Decision-Tree Models for Parsing,” Proc. 33rd Annu. Meet. Assoc. Comput. Linguist., pp. 276–283, 1995. [39] G. H. Kim, Y. W. Kim, G. S. J. Lee, and G. J. Jeon, “Multi-Class System based on SVM for real-time Gas Mixture Classification,” SICE Annu. Conf., pp. 1764–1767, 2010.
|