帳號:guest(18.191.107.190)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱建豪
作者(外文):Chiu, Chien-Hao
論文名稱(中文):有限孔徑效應修正之壓縮感測光聲斷層掃描影像重建
論文名稱(外文):Finite-Aperture-Effect Corrected Compressive Sensing Image Reconstruction of Photo-acoustic Tomography
指導教授(中文):李夢麟
指導教授(外文):Li, Meng-Lin
口試委員(中文):王士豪
許靖涵
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061615
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:76
中文關鍵詞:壓縮感測光聲斷層掃描
外文關鍵詞:Compressive SensingPhoto-acoustic Tomography
相關次數:
  • 推薦推薦:0
  • 點閱點閱:309
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
我們在這本論文裡提出了一種全新的基於壓縮感測理論具修正有限孔徑效應之光聲斷層掃瞄影像重建技術。將造成有限孔徑效應即切向解析度失真的探頭空間脈衝響應整合於壓縮感測的光聲斷層掃描影像重建模型上,利用數學上的反摺積方法,以有效地消除平面非聚焦式探頭帶來的有限孔徑效應。 同時透過非線性的凸型最佳化法,此重建僅需要相對少量的掃描角度數量。因此,在同一重建影像品質的基準上,此重建法相較於傳統的演算法,所需資料量較少所以資料擷取所需時間較短。同時,因探頭的空間脈衝響應形成的有限孔徑效應而離掃瞄中心愈遠隨之下降的切向解析度,也可透過我們所提出的重建技術而大幅地改善。透過本論文所提出之重建演算法,運用於光聲斷層掃描上,不僅能使用訊雜比較好且接收面積較大的平面式探頭,能有效的消除切向解析度失真的問題,更可以有效地降低資料擷取時間和資料量,針對環形陣列探頭的光聲斷層掃描系統,更能夠有效降低系統成功。模擬與實驗結果驗證了本篇論文提出的重建技術不僅能有效地消除有限孔徑效應,更能夠降低資料擷取時間。
In this study, we propose a new compressive sensing (CS) based image reconstruction method for photoacoustic tomography (PAT) where the finite aperture effect is corrected. To eliminate the finite aperture effect, the proposed method adopts the spatial impulse responses (SIRs) of the finite-sized unfocused transducer into the discrete linear PAT imaging model for CS. By using the nonlinear recovery algorithm based on convex optimization, PAT can be reconstructed with highly incomplete data. Therefore, the number of measurements and the system cost needed for a certain image quality can be significantly reduced. In the mean time, retrospective restoration of the tangential resolution can be achieved because the SIRs of the unfocused transducer is incorporated in the CS. Simulation and experimental results demonstrate that this method can not only reduce the data acquisition time but also improve the degraded tangential resolution for PAT with finite-sized unfocused transducers.
摘要 5
Abstract 6
表目錄 13
第一章 緒論 14
1.1 光聲斷層掃描簡介 14
1.2 逆投影演算法 15
1.3 有限孔徑效應 18
1.4 壓縮感測簡介 22
1.5 研究動機與目的 25
1.6 論文架構 26
第二章 有限孔徑效應修正之壓縮感測影像重建 27
2.1 光聲斷層掃描感測矩陣 27
2.2 壓縮感測理論於光聲斷層掃描重建 32
第三章 模擬與實驗 38
3.1 模擬參數及設定 38
3.2 模擬結果與討論 40
3.3 實驗Data重建 56
第四章 結論與未來工作 66
4.1 結論 66
4.2 未來工作 67
參考文獻 73
1. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).

2. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008).

3. Xing, and L. Z. Xiang, “Photoacoustic and Thermoaocustic Imaging Application in Cancer Early Detection and Treatment Monitoring”, Proc. Of SPIE Vol.6826, 68260B,(2007).


4. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimentional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J.Biol. Opt. 11, 034032(2006)

5. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).

6. T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of melanoma skin cancer in-vivo by dual wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).


7. F. Zhang, K. Maslov, and M. Sivaramakrishnan, “Imaging of hemoblobin oxygen saturation variations in single vessels in vivo using photoacoustic microsopy”,Am. Ind. Phys. July(2007).



8. Xu, D. Feng, and L. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography—I: Planar geometry," IEEE Transactions on Medical Imaging 21 (7), 823–828 (July 2002).

9. Xu, M. Xu, and L. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography—II: Cylindrical geometry," IEEE Transactions on Medical Imaging 21 (7), 829–833 (July 2002).

10. Frazier and W. D. O’Brien, Jr., ‘‘Synthetic aperture techniques with a virtual source element,’’ IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 196–207 (1998).

11. Lorenz, ‘‘Ultrasonic imaging for the characterization of defects in steel components,’’ Ph.D. thesis, Delft University of Technology, 1993.

12. Hannemann, ‘‘Modeling and imaging of elastodynamic wave fields in homogeneous anisotropic media,’’ Ph.D. thesis, Kassel University, 2001.

13. Nikolov, ‘‘Synthetic aperture tissue and flow ultrasonic imaging,’’ Ph.D. thesis, Technical University of Denmark, 1993.

14. Lingvall, “Time domain reconstruction methods for ultrasonic array imaging,” Ph.D. dissertation, Signals and Systems, Uppsala University, Uppsala, Sweden (2004).

15. M. Xu, and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056605 (2003).

16. P. R. Stepanishen, “Transient radiation from pistons in an infinite planar baffle,” J. Acoust. Soc. Am. 49(5B), 1629–1638 (1971).

17. B. Piwakowski, and B. Delannoy, “Method for computing spatial pulse response: Time-domain approach,” J. Acoust. Soc. Am. 86(6), 2422–2432 (1989).

18. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty priciples: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489-509(2006)

19. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med., vol. 58, no. 6, pp. 1182-1195, Dec. 2007

20. J. Provost and F. Lesage, “The Application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imaging 28(4), 585-594 (2009).

21. Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed Sensing in Photoacoustic Tomography in Vivo,” Journal of Biomedical Optics 15(2), 021311 (2010)

22. M. Sun, N. Feng, Y. Shen, X. Shen, L. Ma, J. Li, and Z. Wu, “Photoacoustic Imaging Method Based on Arc-direction Compressed Sensing and Multi-angle Observation,” Optics Express, 19(16), 14801(2011)

23.J. Meng, L. V. Wang, D. Liang, and L. Song, “In Vivo Optical-resolution Photoacoustic Computed Tomography with Compressed Sensing,” Optics Letters, 37(22), 176019(2012)

24. M. Sun, N. Feng, Y. Shen, J. Li, L. Ma, and Z. Wu, “Photoacoustic image reconstruction based on Bayesian compressive sensing algorithm,” Chinese Optics Letter, 9(6), 061002(2011)

25. M. L. Li, Y. C. Tseng, and C. C. Cheng, “Model-based correction of finite aperture effect in photoacoustic tomography, “Optics Express,” 18(25), 26285(2010)

26. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, 52(4) 1289-1306, Apr. 2006


27.http://www.signal.uu.se/Toolbox/dream/

28.http://cvxr.com/cvx/
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *