|
[1] E. R. Berlekamp, R. E. peile, and S. P. Pope, “The application of error control to communications,” IEEE Commun. Mag., vol.25, pp. 44-57, 1987.
[2] W. W. Wu, D. Haccoun, R. E. peile, and Y. Hirata, “Coding for satellite communication,” IEEE J. Select. Areas Commun., vol. SAC-5, pp. 724- 785, 1987.
[3] Consultative Committee for Space Data Systems, “Recommendations for Space Data System Standards: Telemetry Channel Coding,” Blue Book, 1984.
[4] E. R. Berlekamp, J. Shifman, and W. Toms, “An application of Reed- Solomon codes to a satellite TDMA system,” MILCOM’86, Monterey, CA.
[5] B. C. Mortimer, M. J. Moore, and M. Sablatash, “The design of a high- performance error-correcting coding scheme for the Canadian broadcast telidon system based on Reed-Solomon codes,” IEEE Trans. Commun., vol. COM-35, pp. 1113-1138, 1987.
[6] M. B. Pursley and W. E. Stark, “Performance of Reed-Solomon coded frequency-hop spread-spectrum communication in partial-band interfer- ence,” IEEE Trans. Commun., vol. COM-33, pp. 767-774, 1985.
[7] D. Divsalar, R. M. Gagliardi, and J. H. Yuen, “PPM performance for Reed-Solomon decoding over an optical-RF relay link,” IEEE Trans, Commun., vol. COM-32, pp. 302-305, 2984.
[8] J. Jiang, K. R. Narayanan, “Iterative soft-input soft-output decoding of Reed-Solomon codes by adapting the parity-check matrix,” IEEE Trasn. Inf. Theory, vol. 52, no. 8, 2006.
[9] M. P. C. Fossorier, S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,” IEEE Trasn. Inf. Theory, vol. 41, pp. 1379- 1396, Sep. 1995.
[10] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor Graphs and the Sum-Product Algorithm,” IEEE Trasn. Inf. Theory, vol. 47, no. 2, Feb. 2001.
[11] R. G. Gallager, “Low-density parity-check codes,” Cambridge, MA:MIT Press, 1963.
[12] W. J. Gross, F. R. Kschischang R. Koetter, and P. G. Gulak, “Applica- tions of algebraic soft-decision decoding of Reed-Solomon codes,” IEEE Trans. Communi., vol. 54, no. 7, pp. 1224-1234, Jul. 2006.
[13] H. Tang, Y. Liu, M. P. C. Fossorier, and S. Lin, “Combining Chase-2 and GMD decoding algorithms for nonbinary block codes,” IEEE Commun. Lett., vol. 5, no. 5, pp. 209-211, May 2000.
[14] A. Kothiyal and O. Y. Takeshita, “A comparison of adaptive belief prop- agation and the best graph algorithm for the decoding of block codes,” in Proc. IEEE Int. Symp. on Inform. Theory 2005, pp. 724-728.
[15] A. V. Casado, M. Griot, and R. Wesel, “LDPC decoders with in- formed dynamic scheduling,” IEEE Trans. on Commun., vol. 58, no. 12, pp. 3470-3479, Dec. 2010.
[16] H.-C. Lee, Y.-L. Ueng, S.-M. Yeh, and W.-Y. Weng, “Two informed dy- namic scheduling strategies for iterative LDPC decoders,” IEEE Trans. on Commun., vol. 61, no. 3, pp. 886-896, Mar. 2013.
[17] H.-C. Lee, and Y.-L. Ueng, “Informed dynamic schedules for LDPC de- coding using belief propagation,” in Proc. 24th IEEE Int. Symp. on Per- sonal Indoor and Mobile Radio Communications (PIMRC 2013), Lon- don, UK, 8-11 Sept., 2013
[18] D. Agrawal and A. Vardy, “Generalized-minimum-distance decoding in euclidean space: Performance analysis,” in IEEE Trans. Inform. Theory, vol. 46, pp. 60-83, Jan. 2000.
[19] M. Fossorier and S. Lin, “Error performance analysis for reliability-based decoding algorithms,” in IEEE Trans. Inform. Theory, vol. 48, pp. 287- 293, Jan. 2002.
|