帳號:guest(3.149.234.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉詒軒
作者(外文):Liu, Yi-Hsuan
論文名稱(中文):心腦互動的穿戴式平台探討
論文名稱(外文):A Wearable Platform for Heart Brain Crosstalk Study
指導教授(中文):馬席彬
指導教授(外文):Ma, Hsin-Pin
口試委員(中文):馬席彬
吳炤民
闕河鳴
蔡佩芸
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061609
出版年(民國):103
畢業學年度:103
語文別:英文
論文頁數:67
中文關鍵詞:穿戴式心腦對談
相關次數:
  • 推薦推薦:0
  • 點閱點閱:496
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在論文中,我們提出一個可以由行動裝置同時監測心電圖與腦波的系統,大致上可以分成三個部分,分別為無線量測心電圖、腦波以及在行動裝置上監測訊號並記錄下來。

在心電圖方面,我們設計一個混合訊號晶片並根據這個晶片實作出一個心電圖監控平台。這個晶片包括類比放大器、類比數位轉換器、數位信號處理器以及無線收發機,而在論文中我們集中描述數位信號處理器的部分。數位信號處理器大致由微控制器、特徵擷取電路以及其餘輔助電路所組成。微控制器主要負責控制整個系統的參數,包括取樣頻率、調變頻率的微調以及特徵擷取電路的濾波係數等等。而為了降低無線傳輸的功耗,因此加上擷取R-R區間的電路來降低傳輸的資料量。這個無線感測晶片是以TSMC 0.18µm的製程所實現,在操作電壓0.8伏特以及500000赫茲的操作環境下,數位電路的功率消耗為57.84微瓦。而我們也根據這晶片實作出一個感測原型,其面積為28 x 28 平方毫米、功率消耗為26.4毫瓦,若是使用850毫安培小時的電池可以持續操作四天。

在腦波方面,我們提出一個可攜式的量測原型,其中包含放大器、濾波器、類比數位轉換器、數位控制電路以及藍芽模組。此原型可以量測alpha波以及beta波。而此原型在3.3伏特的操作電壓環境下,其功耗為172.3毫瓦。此外,我們也提出一個手機軟體可以透過通用序列匯流排及藍芽將心電圖及腦波接收到行動裝置上並同時展示這兩個訊號。
1 Introduction 1
1.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Biomedical Signals and Processing . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.1 Electrocardiography . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Electroencephalography . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 Discrete Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 System on Chip for Biomedical Signal Measuring, Recording and Processing 13
2.1 Preview of SoC-based Telecare System . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Analog Frond-end . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Wireless Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Digital Core based on Micro-controller 8051 . . . . . . . . . . . . . . . . . . 15
2.2.1 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 A Configurable Wavelet-based Processor for Feature Extraction . . . 21
2.3 System Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Proposed Prototype Implementation for Heart-Brain Information 31
3.1 SoC-based ECG Measuring Prototype . . . . . . . . . . . . . . . . . . . . . 32
3.1.1 Sensor Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Monitor Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Portable EEG Measuring Prototype . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Analog frond-end Circuit . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 ADC and Digital Control Unit . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Wireless Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.4 Finished Prototype and Specification . . . . . . . . . . . . . . . . . 41
3.3 Mobile Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Android Accessory Development Kit and Universal Serial Bus . . . . 43
3.3.2 Integrated Application Programming Interface . . . . . . . . . . . . 44
4 Implementation and Integration result of Wearable Platform 47
4.1 Mixed-Signal System-on-Chip Integration and verification Flow . . . . . . . 47
4.2 Heart-Brain Information System Result . . . . . . . . . . . . . . . . . . . . 49
4.2.1 ASIC Implementation Results . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Digital Core of System-on-Chip Simulation and Measurement . . . . 51
4.2.3 EEG Monitoring System Implementation Result . . . . . . . . . . . 54
4.2.4 Integrated Interface Implementation Result . . . . . . . . . . . . . . 57
4.3 System Performance and Comparison . . . . . . . . . . . . . . . . . . . . . 58
5 Future Work and Conclusion 61
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
[1] Y. G. Lim, K. K. Kim, and S. Park, “ECG measurement on a chair without conductive
contact,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 5, pp. 956–959,
May 2006.
[2] S. Fuhrhop, S. Lamparth, and S. Heuer, “A textile integrated long-term ECG monitor
with capacitively coupled electrodes,” in 2009 IEEE Biomedical Circuits and Systems
Conference (BioCAS 2009), Nov 2009, pp. 21–24.
[3] D. Simunic, S. Tomac, and I. Vrdoljak, “Wireless ECG monitoring system,” in 2009 1st
International Conference on Wireless Communication, Vehicular Technology, Information
Theory and Aerospace and Electronic Systems Technology (Wireless VITAE 2009),
May 2009, pp. 73–76.
[4] R. Fensli, E. Gunnarson, and O. Hejlesen, “A wireless ECG system for continuous
event recording and communication to a clinical alarm station,” in 26th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
2004.(IEMBS.’04), vol. 1, Sept 2004, pp. 2208–2211.
[5] C.-C. Chan, W.-C. Chou, C.-W. Chen, Y.-L. Ho, Y.-H. Lin, and H.-P. Ma, “Energy efficient
diagnostic grade mobile ECG monitoring,” in 2012 IEEE 10th International New
Circuits and Systems Conference (NEWCAS), June 2012, pp. 153–156.
[6] S. Filipe, G. Charvet, M. Foerster, J. Porcherot, J. Beche, S. Bonnet, P. Audebert,
G. Regis, B. Zongo, S. Robinet, C. Condemine, C. Mestais, and R. Guillemaud, “A wireless
multichannel EEG recording platform,” in 2011 33rd Annual International Confer ence of the IEEE Engineering in Medicine and Biology Society (EMBC), Aug 2011, pp.
6319–6322.
[7] J. Lovelace, T. Witt, and F. Beyette, “Bluetooth enabled electroencephalograph (EEG)
platform,” in 2013 IEEE 56th International Midwest Symposium on Circuits and Systems
(MWSCAS), Aug 2013, pp. 1172–1175.
[8] X. Chen and J. Wang, “Design and Implementation of a Wearable, Wireless EEG
Recording System,” in 2011 5th International Conference on Bioinformatics and
Biomedical Engineering (ICBBE), May 2011, pp. 1–4.
[9] B. Luan, M. Sun, and W. Jia, “Portable amplifier design for a novel EEG monitor in
point-of-care applications,” in 2012 38th Annual Northeast Bioengineering Conference
(NEBEC), March 2012, pp. 388–389.
[10] EmergSource. (2014) ECG Basics: Parts of the ECG. [Online]. Available:
http://www.emergsource.com/?page id=90
[11] C. Van Mieghem, Marc Sabbe, and Daniel Knockaert, “The clinical value of the ECG
in noncardiac conditions,” Chest Journal.
[12] R. M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach, 1st ed. Piscataway,
NJ, USA: Wiley-IEEE Press, December 2001.
[13] C. Thanawattano, R. Pongthornseri, and S. Dumnin, “Wearable wireless ECG sensor
with cross-platform real-time monitoring,” in 2012 IEEE EMBS Conference on Biomedical
Engineering and Sciences (IECBES), Dec 2012, pp. 284–287.
[14] D. Lucani, G. Cataldo, J. Cruz, G. Villegas, and S. Wong, “A portable ECG monitoring
device with Bluetooth and Holter capabilities for telemedicine applications,” in 2006
28th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Aug 2006, pp. 5244–5247.[15] G.-Y. Jeong and K.-H. Yu, “Development of ambulatory ECG monitoring device with
ST shape classification,” in 2007 International Conference on Control, Automation and
Systems (ICCAS), Oct 2007, pp. 1591–1595.
[16] C.-C. Tu and T.-H. Lin, “Measurement and parameter characterization of pseudo-resistor
based CCIA for biomedical applications,” in 2014 IEEE International Symposium on
Bioelectronics and Bioinformatics (ISBB), April 2014, pp. 1–4.
[17] Y.-L. Tsai, J.-Y. Chen, B.-C. Wang, T.-Y. Yeh, and T.-H. Lin, “A 400MHz 10Mbps
D-BPSK receiver with a reference-less dynamic phase-to-amplitude demodulation technique,”
in 2014 Symposium on VLSI Circuits Digest of Technical Papers, June 2014, pp.
1–2.
[18] W.-C. Chou, “An energy efficientwireless healthcare monitoring system,” Master’s thesis,
Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan,
July 2013.
[19] J. Simsic and S. Teran. (2001, September) Open core design document. [Online].
Available: http://www.opencores.org
[20] W.-L. Yang, “A configurablewavelet processor for biomedical applications,” Master’s
thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu,
Taiwan, October 2013.
[21] National Institute of Biomedical Imaging and Bioengineering. (2012, January) MITBIH
arrhythmia database. [Online]. Available: http://www.physionet.org/physiobank/
database/mitdb/
[22] M. Nakano, T. Konishi, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “Instantaneous
Heart Rate detection using short-time autocorrelation for wearable healthcare systems,”
in IEEE International Conference on Engineering in Medicine and Biology Society
(EMBS), San Diego, California, U.S.A., August 2012, pp. 6703–6706.
[23] C. I. Ieong, M. I. Vai, and P. U. Mak, “ECG QRS Complex detection with programmable
hardware,” in IEEE International Conference on Engineering in Medicine and Biology
Society (EMBS), Vancouver, British Columbia, Canada, August 2008, pp. 2920–2923.
[24] J. Martinez, R. Almeida, S. Olmos, A. Rocha, and P. Laguna, “A wavelet-based ECG
delineator: evaluation on standard databases,” IEEE Transactions on Biomedical Engineering,
vol. 51, no. 4, pp. 570–581, 2004.
[25] H.-Y. Lin, S.-Y. Liang, Y.-L. Ho, Y.-H. Lin, and H.-P. Ma, “Discrete-wavelet-transformbased
noise reduction and R wave detection for ECG signals,” in 2013 IEEE 15th International
Conference on e-Health Networking, Applications Services (Healthcom 2013),,
Oct 2013, pp. 355–360.
[26] H. Y. Lin and H. P. Ma, “A Wavelet Based Method for Noise Reduction and R wave
Detection Algorithm in ECG signal,” in VLSI Design/CAD Symposium, Kenting, Taiwan,
August 7-10 2012.
[27] USB Implementers Forum. (2014) USB 2.0 Specification. [Online]. Available:
http://www.usb.org/developers/docs/usb20 docs/#usb20spec
[28] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing, 3rd ed. Upper Saddle
River, NU, USA: Prentice Hall, August 2008.
[29] Hotlife. (2014) Bluetooth UART Module Menu. [Online]. Available: http://www.
hotlife.com.tw/specification/HL-MD08R-C2A UsersManual CHT.pdf
[30] C.-C. Chan, “A diagnostic grade mobile healthcare platform,” Master’s thesis, Department
of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, July
2013.
[31] G. I. Android 4.2. (2013, March) Accessory development kit. [Online]. Available:
http://developer.android.com/tools/adk/index.html
[32] G. Inc. (2013, March) USB host. [Online]. Available: http://developer.android.com/
guide/topics/connectivity/usb/host.html
[33] K. I. Inc. (2011, Sep) Model 2400 SourceMeter Specifications. [Online]. Available:
http://www.keithley.com/data?asset=5985
[34] F. Zhang, Y. Zhang, J. Silver, Y. Shakhsheer, M. Nagaraju, A. Klinefelter, J. Pandey,
J. Boley, E. Carlson, A. Shrivastava, B. Otis, and B. Calhoun, “A batteryless 19w
MICS/ISM-band energy harvesting body area sensor node SoC,” in 2012 IEEE International
Solid-State Circuits Conference of Technical Papers (ISSCC), Feb 2012, pp.
298–300.
[35] M. Khayatzadeh, X. Zhang, J. Tan, W.-S. Liew, and Y. Lian, “A 0.7-V 17.4-W 3-Lead
Wireless ECG SoC,” 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS),
vol. 7, no. 5, pp. 583–592, Oct 2013.
[36] H. Kim, S. Kim, N. Van Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C. Van Hoof,
and R. Yazicioglu, “A Configurable and Low-power Mixed Signal SoC for Portable
ECG Monitoring Applications,” 2014 IEEE Biomedical Circuits and Systems Conference
(BioCAS), vol. 8, no. 2, pp. 257–267, April 2014.
[37] T. Instruments. (2011, Nov) CC2540. [Online]. Available: http://www.ti.com/lit/ds/
symlink/cc2540.pdf
[38] H.-M.Wang, Y.-L. Lai, M. Hou, S.-H. Lin, B. Yen, Y.-C. Huang, L.-C. Chou, S.-Y. Hsu,
S.-C. Huang, and M.-Y. Jan, “A 6ms-accuracy, 0.68mm2 and 2.21 w qrs detection
asic,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems
(ISCAS), May 2010, pp. 1372–1375.
[39] M. W. Phyu, Y. Zheng, B. Zhao, L. Xin, and Y. S. Wang, “A real-time ECG QRS detection
ASIC based on wavelet multiscale analysis,” in 009. A-SSCC 2009. IEEE Asian
Solid-State Circuits Conference, Nov 2009, pp. 293–296.
[40] P.-Y. Chang, S.-Y. Hsu, and C.-Y. Lee, “A 4.88 w ECG delineator using wavelet transform
for mobile healthcare application,” in 2012 IEEE Biomedical Circuits and Systems
Conference (BioCAS), Nov 2012, pp. 376–379.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *