帳號:guest(18.191.116.19)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許淳皓
作者(外文):Hsu, Chun Hao
論文名稱(中文):結合模式預測控制和重複控制策略改善不平衡與非線性負載時孤島模式下電力轉換器控制
論文名稱(外文):Dynamical Performance Enhancement of Isolated Power Converters under Unbalanced and Nonlinear Load Conditions by Combining Model Predictive Control and Repetitive Control
指導教授(中文):朱家齊
指導教授(外文):Chu, Chia Chi
口試委員(中文):陳偉倫
廖益弘
林正凱
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061605
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:82
中文關鍵詞:孤島模式不平衡負載非線性負載電壓不平衡率諧波失真率模式預測控制重複控制同步旋轉座標
外文關鍵詞:isolated microgridunbalanced loadnonlinear loadvoltage unbalanced ratetotal harmonic distortion (THD)model predictive controlrepetitive controldiscrete model
相關次數:
  • 推薦推薦:0
  • 點閱點閱:522
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
在微電網孤島模式的操作下,輸出電壓波形受到負載條件的不同而有所影響,其中又以不平衡負載與非線性負載影響甚鉅。為了降低不平衡負載所造成的電壓不平衡率以及改善總電壓諧波失真率(Total Harmonic Distortion,THD),本文於現有的電壓源轉換器(Voltage Source Converter,VSC)之雙迴圈控制架構下,採用模式預測控制於內迴圈電流控制器設計,並將重複控制用於外迴圈電壓控制器。其中,由推導得知內迴圈電流閉迴路系統轉移函數,並根據它來設計外迴圈之重複電壓控制器。結合兩者的優點,不僅在追蹤週期性訊號或抑制週期性的干擾都能有效達到零穩態誤差追蹤的效果,且系統動態特性也有較快的響應。此外,基於d-q同步旋轉座標下建立離散時間數學模型來分析模式預測控制器與重複控制器的參數挑選對於整體系統的穩定性、誤差收斂速度及穩態誤差特性有何影響。
本文除了介紹控制器的參數設計方法外,並於不平衡負載、非線性負載及各種換載條件下來測試PCC(Point of Common Coupling)點電壓的命令追蹤能力。由模擬結果發現,不僅在動態追蹤行為上有令人滿意的結果,在穩態追蹤能力也相當出色。並於相關參數的變動下針對系統補償結果來做討論。因此結合模式預測控制和重複控制的複合控制法對於電壓不平衡率及電壓總諧波失真率改善效果顯著。此控制策略透過Matlab/Simulink模擬環境下實現,驗證所提出的理論分析與控制器設計之可行性。
Under the isolated microgrid, the output voltage of the inverter is influenced by different load conditions; further, the unbalanced load and the nonlinear load affect the output voltage of the inverter significantly. In order to mitigate voltage unbalance rate and improve total harmonic distortion (THD) caused by the unbalanced loads under the existing converter structure, this thesis not only applies model predictive control on inner current control loop to improve the dynamic response, but also performs the repetitive control on the outer loop to improve THD. Besides, the discrete model for analyzing effect of the predictive controller and repetitive controller are constructed to prove the stability of the system. The proposed control strategy is performed by Simulink; moreover, the presented theory are also verified by different simulations such as unbalanced loads, nonlinear loads and switching loads.
誌謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 IX
第一章、緒論 1
1.1 研究動機與文獻回顧 1
1.2 本篇貢獻 5
1.3 論文架構 5
第二章、模式預測控制與重複控制理論 7
2.1 模式預測控制概述 7
2.1.1 模式預測控制應用於電力轉換器 9
2.2 重複控制概述 11
2.2.1 內模原理 11
2.2.2 理想重複控制系統架構 14
2.2.3 改進型重複控制系統架構 15
2.2.4 重複控制系統分析 16
2.2.5 重複控制器相關參數挑選 19
2.2.6 重複控制器設計步驟 22
2.3 小結 22
第三章、模式預測控制與重複控制應用於孤島模式操作 23
3.1 前言 23
3.2 孤島模式操作下之VSC系統架構 23
3.3 模式預測控制於內迴圈電流控制器設計 24
3.3.1 三相二階 VSC架構之開關狀態和操作限制 25
3.3.2 定義成本函數和建立系統離散時間數學模型 28
3.3.3 模式預測電流控制之系統分析與最佳化控制 30
3.3.4 具積分特性之模式預測電流控制 36
3.3.5 建立具積分特性之模式預測電流控制演算法 39
3.4 重複控制於外迴圈電壓控制器設計 45
3.4.1 PCC點電壓控制 46
3.4.2 重複電壓控制器 48
3.5 小結 49
第四章、模擬結果分析 50
4.1 簡介 50
4.2 系統參數 50
4.3 控制器設計 51
4.3.1 內迴圈電流控制器設計 51
4.3.2 外迴圈電壓控制器設計 54
4.4 案例分析 58
4.4.1 不平衡負載條件下之穩態補償實驗 58
4.4.2 非線性負載條件下之穩態補償實驗 62
4.4.3 換載條件下之補償實驗 66
4.4.4 換載下改變電壓命令之補償實驗 69
4.4.5 線路電阻與濾波電感的擾動和取樣頻率對補償效果之影響 71
4.5 小結 76
第五章、結論和未來研究方向 77
5.1 結論 77
5.2 未來研究方向 77
參考文獻 79
[1] J. Driesen and F. Katiraei, “Design for distributed energy resources,” IEEE Power Energy Mag., vol. 6, pp. 30–40, May/Jun. 2008.
[2] C.-Y. Lee, “Effects of unbalanced voltage on the operation performance of a three-phase induction motor,” IEEE Trans. Energy Conversion, vol. 14, no. 2, pp. 202–208, Jun. 1999.
[3] J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, “Defining control strategies for analysing microgrids islanded operation,” IEEE Power Tech, pp. 1–7, Jun. 2005.
[4] R. Costa-Castello, J. Nebot, and R. Grino, “Demonstration of the internal model principle by digital repetitive control of an educational laboratory plant,” IEEE Trans. Educ., vol. 48, no. 1, pp. 73–80, Feb. 2005.
[5] G. Hillerstrom and K. Walgama, “Repetitive control theory and applications–A survey,” in Proc. 13th IFAC World Congr., vol. D, pp. 1–6, Jul. 1996.
[6] M. Tomizuka, “Dealing with periodic disturbances in controls of mechanical systems,” Annu. Rev. Control, vol. 32, no. 2, pp. 193–199, Dec. 2008.
[7] Y. Wang, F. Gao, and F. J. Doyle, III, “Survey on iterative learning control, repetitive control, and run-to-run control,” J. Process Control, vol. 19, no. 10, pp. 1589–1600, Dec. 2009.
[8] K. Zhou, K. Low, D. Wang, F. Luo, B. Zhang, and Y. Wang, “Zero-phase odd-harmonic repetitive controller for a single-phase PWM inverter,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 193–201, Jan. 2006.
[9] Y. Ye, B. Zhang, K. Zhou, D. Wang, and Y. Wang, “High-performance cascade-type repetitive controller for CVCF PWM inverter: Analysis and design,” IET Electr. Power Appl., vol. 1, no. 1, pp. 112–118, Jan. 2007.
[10] K. K. Chew and M. Tomizuka, “Digital control of repetitive errors in disk drive systems,” in Proc. Amer. Control Conf., pp. 540–548, Jun. 1989.
[11] K. K. Chew and M. Tomizuka, “Digital control of repetitive errors in disk drive systems,” IEEE Control Syst. Mag., vol. 10, no. 1, pp. 16–20, Jan. 1990.
[12] Cosner, G. Anwar, and M. Tomizuka, “Plug in repetitive control for industrial robotic manipulators,” in Proc. IEEE Int. Conf. Robot. Automat., pp. 1970–1975, May 1990.
[13] G. Escobar, A. A. Valdez, J. Leyva-Ramos, and P. Mattavelli, “Repetitive-based controller for a UPS inverter to compensate unbalance and harmonic distortion,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 504–510, Feb. 2007.
[14] R. Costa-Castello, R. Grino, and E. Fossas, “Odd-harmonic digital repetitive control of a single-phase current active filter,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 1060–1068, Jul. 2004.
[15] J. Rodriguez, J. Pontt, C. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495–503, Feb. 2007.
[16] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez, “Predictive control in power electronics and drives,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4312–4324, Dec. 2008.
[17] T. Kawabata, T. Miyashita, and Y. Yamamoto, “Dead beat control of three phase PWM inverter,” IEEE Trans. Power Electron., vol. 5, pp. 21–28, Jan. 1990.
[18] O. Kukrer, “Discrete-time current control of voltage-fed three-phase PWM inverters,” IEEE Trans. Power Electron., vol. 11, pp. 260–269, Mar. 1996.
[19] J. Rodriguez and P. Cortes, Predictive Control of Power Converters and Electrical Drives, 1st ed. Chichester, U.K.: IEEE press–Wiley, 2012.
[20] A. G. Beccuti, S. Mariethoz, S. Cliquennois, S. Wang, and M. Morari, “Explicit model predictive control of dc–dc switched-mode power supplies with extended Kalman filtering,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1864–1874, Jun. 2009.
[21] S. Mariethoz and M. Morari, “Explicit model-predictive control of a PWM inverter with an LCL filter,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 389–399, Feb. 2009.

[22] S. Mariethoz, A. Domahidi, and M. Morari, “Sensorless explicit model predictive control of permanent magnet synchronous motors,” in IEEE International Electric Machines and Drives Conference (IEMDC), pp. 1250 –1257, May 2009.
[23] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, “Model predictive control – A simple and powerful method to control power converters,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1826–1838, Jun. 2009.
[24] J. Leyva-Ramos, G. Escobar, P. R. Martinez, and P. Mattavelli, “Analog circuits to implement repetitive controllers for tracking and disturbance rejection of periodic signals,” IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 52, no. 8, pp. 466–470, Aug. 2005.
[25] K. K. Chew and M. Tomizuka, “Steady-state and stochastic performance of a modified discrete-time prototype repetitive controller,” ASME J. Dynamic Syst. Measurement Cont., vol. 112, no. 1, pp. 35–41, Mar. 1990.
[26] B. Zhang, D. Wang, K. Zhou, and Y. Wang, “Linear phase lead compensation repetitive control of a CVCF PWM inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1595–1602, Apr. 2008.
[27] M. Tomizuka, T. Tsao, and K. Chew, “Analysis and synthesis of discrete-time repetitive controllers,” Trans. ASME, J. Dyn. Syst., Meas., Control, vol. 111, no. 3, pp. 353–358, Sep. 1989.
[28] K. Zhou and D. Wang, “Periodic errors elimination in CVCF PWM DC/AC converter systems: repetitive control approach,” Proc. Inst. Elect. Eng., vol. 147, no. 6, pp. 694–700, Nov. 2000.
[29] T. Inoue, “Practical repetitive control system design,” in IEEE Proc. 29th Conf. Decision and Control, pp. 1673–1678, Dec. 1990.
[30] D. Wang and Y. Ye, “Design and experiments of anticipatory learning control: Frequency domain approach,” IEEE/ASME Trans. Mechatronics, vol. 10, no. 3, pp. 305–313, Jun. 2005.
[31] T. C. Tsao and M. Tomizuka, “Robust adaptive and repetitive digital control and application to hydraulic servo for noncircular machining,” ASME J. Dynam. Syst., Meas., Contr., vol. 116, no. 1, pp. 24–32, Mar. 1994.
[32] A. Yazdani, “Control of an islanded distributed energy resource unit with load compensating feed-forward,” in Proc. IEEE PES Gen. Meeting, pp. 1–7, Aug. 2008.
[33] L. Wang, S. Chai, D. Yoo, L. Gan, and K. Ng, PID and Predictive Control of Electrical Drives and Power Converters using Matlab/Simulink, 1st ed. Singapore:IEEE press–Wiley, 2015.
[34] T. Wang, Z. Ye, G. Sinha, and X. Yuan, “Output filter design for a grid-interconnected three-phase inverter,” in Proc. IEEE PESC, vol. 2, pp. 779–784, Jun. 2003.
[35] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1323–1325, Feb. 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *