帳號:guest(3.23.103.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫永杰
作者(外文):Sun, Yong-Jie
論文名稱(中文):具超電容電動車開關式磁阻馬達驅動系統之開發
論文名稱(外文):DEVELOPMENT OF AN ELECTRIC VEHICLE SWITCHED-RELUCTANCE MOTOR DRIVE WITH SUPER-CAPACITOR
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):王醴
龔應時
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061604
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:147
中文關鍵詞:開關式磁阻馬達電動車電動車載具蓄電池再生煞車超電容功因校正車輛至家庭電網至車輛交錯式轉換器單相三線式變頻器
外文關鍵詞:SRMEVSuper-capacitorG2VV2H
相關次數:
  • 推薦推薦:0
  • 點閱點閱:92
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
摘 要
  本論文旨在開發一具蓄電池/超電容混合式能源之電動車三相開關式磁阻馬達驅動系統。除正常電動車驅動操作外,並利用電動車馬達驅動系統中既有元件組建整合式電路,具有電網至車輛及車輛至電網操作功能。所開發之馬達驅動系統,其開關式磁阻馬達非對稱橋式轉換器,由蓄電池經一交錯式直流/直流升壓轉換器供電。至於納用之超電容,以直流/直流降壓轉換器介接至馬達驅動系統之直流鏈,並透過二極體將超電容連接至蓄電池。在間歇及頻繁短期加減速下之能源轉換,可由超電容提供,因而有效地減少蓄電池充放電時間,有利於蓄電池壽命之延長。藉由適宜之切換和動態控制,以及換相前移和升壓策略,所建電動車馬達驅動系統具良好之驅動和煞車操控性能。
  當車輛處於閒置狀態,藉由適當地安排馬達驅動系統固有之功率元件,可從事具良好交流入電電力品質之電網至車輛充電操作。其電力電路由單相全橋式升壓型切換式整流器或單相無橋式升壓型切換式整流器和降壓轉換器為主之充電器組成。至於車輛至家庭操作模式,建構一具升壓直流鏈電壓之單相三線式變頻器,由變頻器產出60Hz 220/110V 交流電源以供給國內家電。採用差模及共模控制,在未知及非線性負載下,可得良好之輸出電壓波形。


關鍵詞: 開關式磁阻馬達、電動車、電動車載具、蓄電池、再生煞車、超電容、交錯式轉換器、單相三線式變頻器、功因校正、電網至車輛、車輛至家庭。
ABSTRACT
This thesis develops a three-phase switched-reluctance motor (SRM) drive with battery/super-capacitor hybrid energy for electric vehicle (EV). In addition to normal EV operation, it possesses grid-to-vehicle (G2V) and vehicle-to-home (V2H) functions with integrated schematics constructed using SRM drive embedded components. In the developed motor drive, the asymmetric bridge converter fed SRM is powered by the battery through an interleaved DC/DC boost converter. As to the incorporated super-capacitor (SC), it is interfaced to the SRM drive DC-link via a DC/DC buck converter, and it is connected to the battery bank by a diode. This arrangement allows the energy conversions during intermittent and frequent short-duration acceleration/ deceleration be handled by the SC. It can efficiently reduce the discharging and charging times of the battery, hence the life of battery can be extended. Good driving operation and regenerative braking performance of the established EV motor drive are achieved by properly treating the switching and dynamic controls, commutation instant setting and voltage boosting.
In idle condition, through properly arranging the embedded motor drive power devices, the G2V battery charging with good line drawn power quality can be operated. Its power circuit consists of a full-bridge boost switch-mode rectifier (SMR) or a bridgeless boost SMR and a buck DC/DC converter based charger. As to the V2H operation, a single-phase three-wire (1P3W) inverter with boosted DC-link voltage from battery is constructed to yield the 60Hz 220V/110V AC voltage outputs for domestic appliances. By applying differential mode (DM) and common mode (CM) control approaches, good output voltage waveforms are generated under unknown and non-linear loads.

Key words: SRM, EV, EV load, battery, regenerative braking, super-capacitor, interleaved converter, single-phase three-wire inverter, power factor correction, grid-to-vehicle, vehicle-to-home.
LIST OF CONTENTS
Page
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES xiv
LIST OF SYMBOLS xv
CHAPTER 1 INTRODUCTION 1
CHAPTER 2
SWITCHED-RELUCTANCE MOTOR AND ITS APPLICATION TO ELECTRIC VEHICLE PROPULSION 6
2.1 Introduction 6
2.2 Fundamentals of SRM Drive 7
2.2.1 Structure Features 7
2.2.2 Motoring and Generating Operations 7
2.2.3 Governing Equations 8
2.3 Some SRM Converters 11
2.4 Possible Front-end Converters 15
2.4.1 DC/DC Front-end Converters 15
2.4.2 AC/DC Front-end Converters 16
2.5 Introduction to Electric Vehicles 19
2.6 G2V/V2G Operations of Electric Vehicles 22
2.7 Some Auxiliary Energy Storage Devices for EVs 23
2.8 Some Example EV Integrated Multi-functional Converters 26
2.9 The Developed EV Emulated Load 29
2.9.1 Load Torque Modeling of EV Motor Drive 29
2.9.2 Estimation of Parameters for the Developed EV Load Testbench 32
2.9.3 Driving Characteristic of the SRM Drive with the Developed EV Load Testbench 37
2.10
System Configuration and Functions of the Developed EV SRM Drive 38
CHAPTER 3 THE DEVELOPED EV SRM DRIVE 39
3.1 Introduction 39
3.2
Possible SRM Drive System Configuration with Battery and Super-capacitor 39
3.3 Configuration and Operation of the Developed SRM Drive 41
3.4 Analysis and Design of DC/DC Front-end Converter 46
3.4.1 Buck DC/DC Converter for Super-capacitor 46
3.4.2 Interleaved DC/DC Converter for Battery 48
3.4.3 Design Circuit Component of Interleaved Boost Converter 50
3.4.4 Control Scheme 51
3.4.5 Experiment Performance Evaluation for the Interleaved DC/DC Converter 52
3.5 Switched-Reluctance Motor Drive in Driving Mode 54
3.5.1 Power Circuit 54
3.5.2 Digital Control Environment 58
3.5.3 Control Schemes 63
3.6 Measured Results in Driving Mode 66
CHAPTER 4 GRID-TO-VEHICLE CHARGING MODE 93
4.1 Introduction 93
4.2
System Configuration of the Established SRM Drive in G2V Mode 93
4.2.1 Battery Charger with H-bridge Boost SMR 93
4.2.2 Battery Charger with Bridgeless Boost SMR 95
4.3 Buck DC/DC Front-end Converter in G2V Mode 96
4.4 Integrated Two-stage SMR Based Battery Charger 99
4.4.1Power Circuit 99
4.4.2 Control Scheme 100
4.5 Simulated and Measured Results 102
4.5.1 H-bridge Boost SMR Based Battery Charger 102
4.5.2 Bridgeless Boost SMR Based Battery Charger 106
CHAPTER 5 VEHICLE-TO-HOME DISCHARGING MODE 112
5.1 Introduction 112
5.2 Functions of the Developed SRM Drive in V2H Mode 112
5.3 Some Single-phase Three-wire Inverters 113
5.3.1 Single-phase H-bridge SPWM Inverter 113
5.3.2 Some Possible Single-Phase Three-wire Inverters 115
5.4 Operation of the Developed EV SRM Drive in V2H Mode 117
5.4.1 The Rating of Components in V2H Mode 117
5.4.2 Control Scheme 119
5.5 Simulated and Measured Results 124
5.5.1 Simulated Results 124
5.5.2 Measured Results 129
CHAPTER 6 CONCULSIONS 135
REFERENCES 137
REFERENCES
A. Renewable Energy and Electric Vehicles
[1] G. M. Masters, Renewable and efficient electric power systems, Wiley-Interscience, New Jersey, 2004.
[2] J. Arai, K. Iba, T. Funabashi, Y. Nakanishi, K. Koyanagi and R. Yokoyama, “Power electronics and its applications to renewable energy in Japan,” IEEE Circuits Syst. Mag., vol. 8, no. 3, pp. 52-66, 2008.
[3] Z. Chen, J. M. Guerro and F. Blaabjerg, “ A review of the state of the art of power electronics for wind turbines,” IEEE Transactions on Power Electronics, vol. 24, no. 8, pp. 1859-1878, Aug. 2009.
[4] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp. 1369-1380.
[5] G. Wu, S. Kodama, Y. Ono and Y. Monma, “A hybrid microgrid system including renewable power generations and energy storages for supplying both the DC and AC loads,” in Proc. IEEE ICRERA, 2012, pp. 1-5.
[6] I. Strnad and D. Skrlec, “An approach to the optimal operation of the microgrid with renewable energy sources and energy storage systems,” in Proc. IEEE EUROCO, 2013, pp. 1135-1140.
[7] F. Blaabjerg and K. Ma. “ Future on power electronics for wind turbine systems,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 3, pp. 139-152, 2013.
[8] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[9] G. Nanda and N. C. Kar, “A survey and comparision of characteristics of motor drives used in electric vehicles,” in Proc. IEEE CCECE, 2006, pp. 811-814.
[10] Y. Gao and M. Ehsani. “Design and control methodology of plug-in hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 633-640, 2010.
[11] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[12] O. Hegazy, R. Barrero, J. Van Mierlo, P. Lataire, N. Omar and T. Coosemans, “An advanced power electronics interface for electric vehicles applications,” IEEE Trans. Power Electron., vol. 28, No. 12, pp. 1-14, Dec. 2013.
[13] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo and J. M. Carrasco, “Energy storage systems for transport and grid applications” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, 2010.
[14] V.R. Roberto, L.G. Pau, H.P. Daniel, S. Andreas C. Ignasi, C. Z. Miguel and V. Narcís, “Electric vehicles in power systems with distributed generation: vehicle to microgrid (V2M) project,” in Proc. IEEE EPQU, 2011, pp. 1-6.
[15] K. Yoshimi, M. Osawa, D. Yamashita, T. Niimura, R. Yokoyama, T. Masuda, H. Kondou and T. Hirota, “Practical storage and utilization of household photovoltaic energy by electric vehicle battery,” in Proc. IEEE ISGT, 2012, pp. 1-8.
[16] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
[17] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[18] N. Hoshi, A. Chiba and M. Takemoto, “Characteristic measurements of switched reluctance motor on prototype electric vehicle,” in Proc. IEEE IEVC, 2012, pp. 1-8.
[19] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, Jan. 2012.
[20] H. Gao, Y. Gao and M. Ehsani, “A neural network based SRM drive control strategy for regenerative braking in EV and HEV,” in Proc. IEEE IEMDC, 2001, pp. 571-575.
[21] N. Wada, N. Momma and I. Miki, “Rotor position estimation method in high speed region for 3-phase SRM used in EV,” in Proc. ICEMS, 2012, pp. 1-5.
[22] P. J. Grbovic, P. Delarue, P. Le Moigne and P. Bartholomeus, “A three-terminal ultracapacitor-based energy storage and PFC device for regenerative controlled electric drives,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 301-316, Jan. 2012.
B. Battery and Super-capacitor
[23] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, 2005.
[24] M. Brandl, H. Gall, M. Wenger, V. Lorentz, M. Giegerich, F. Baronti, G. Fantechi, L. Fanucci, R. Roncella, R. Saletti, S. Saponara, A. Thaler, M. Cifrain and W. Prochazka, “Batteries and battery management systems for electric vehicles,” in Proc. IEEE DATE, 2012, pp. 971-976.
[25] S. Pay and Y. Baghzouz, “Effectiveness of battery-supercapacitor combination in electric vehicles,” in Proc. IEEE Power Tech Conf., Bologna, Italy, Jun. 2003, vol. 3, pp. 1-6.
[26] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid and fuel cell vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 806-820, 2007.
[27] S. Lu, K. A. Corzine and M. Ferdowsi, “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516-1523, 2007.
[28] M. B. Camara, H. Galous, F. Gustin and A. Berthon, “Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles,” IEEE Trans Veh. Technol., vol.57, no. 5, pp.2721-2735, Sept. 2008.
[29] H. Yoo, S. K. Sul, Y. Park and J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108-114, Jan.-Feb. 2008.
[30] S. Lambert, V. Pickert, J. Holden, W. Li and X. He, “Overview of supercapacitor voltage equalization circuits for an electric vehicle charging application,” in Proc. IEEE VPPC, 2010, pp. 1-7.
[31] M. B. Camara, H. Gualous, F. Gustin and A. Berthon, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications- polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, 2010.
[32] M. A. Tankari and M. B. Camara, “DC-bus voltage control for multi-sources systems- battery and supercapacitors,” in Proc. IEEE IECON, 2011, pp. 1270-1275.
[33] M. Zandi, A. Payman, J.Martin, S. Pierfederici, B. Davat and F. Meibody-Tabar, “Energy management of a fuel cell/supercapacitor/battery power source foe electric vehicular applications,” IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 443-443, Feb. 2011.
[34] J.M.A. Curti, X. Huang, R. Minaki and Y. Hori, “A simplified power management strategy for a supercapacitor/battery hybrid energy storage system using the half-controlled converter,” IECON 2012, Oct. 2012, pp. 4006-4011.
[35] M. Neenu and S. Muthukumaran, “A battery with ultracapacitor hybrid energy storage system in electric vehicles,” in Proc. IEEE ICAESM, 2012, pp. 731-735.
[36] R. carter, A. Cruden and P. J. Hall, “Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle,” IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1526-1533, May 2012.
[37] A. Ostadi and S. K. Chen, “Hybrid energy storage system (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” in Proc. IEEE ITEC, 2013, pp. 1-7.
[38] A. Tina, M. B. Camara, B. Dakyo and Y. Azzouz, “DC/DC and DC/AC converters control for hybrid electric vehicles energy management-ultracapacitors and fuel cell,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 686-696, 2013.
[39] K. Hata, N. Watanabe and Kyungmin Sung, “A series or parallel changeover system using battery with EDLC for EV,” in Proc. EPE, 2013, pp. 1-10.
C. Switched-Reluctance Motor Drive and Converter
[40] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[41] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[42] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
[43] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[44] K. M. Rahman and S. E. Schulz, “Design of high efficiency and high density switched reluctance motor for vehicle propulsion,” in Proc. IEEE IAC, 2001, vol. 3, pp. 2104-2110.
[45] S. Kachapornkul, P. Jitkreeyarn, P. Somsiri, K. Tungpimolrut, A. Chiba and T. Fukao, “A design of 15 kW switched reluctance motor for electric vehicle applications,” in Proc. IEEE ICEMS, 2007, pp. 1690-1693.
[46] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[47] T. Shibamoto, K. Nakamura, H. Goto and O. Ichinokura, “A design of axis-gap switched reluctance motor for in-wheel direct drive EV,” in Proc. IEEE ICEM., 2012, pp. 1158-1163.
[48] B. Bilgin, A. Emadi and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEV,” IEEE Trans. Ind. Electron., vol. 60, no.72, pp. 2564-2575, 2013.
[49] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[50] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
[51] S. Mir, I. Husain and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, pp. 912-921, 1997.
[52] T. W. Ching, K. T. Chau and C. C. Chan, “A novel zero-voltage soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 899-904.
[53] L. G. B. Rolim, W. I. Suemitsu, E. H. Watanable and R. Hanitsch, “Development of an improved switched reluctance motor drive using a soft-switching converter,” IEE. Elect. Power Appl., vol. 146, no. 5, pp. 488-494, 1999.
[54] D. H. Lee, G. Xu and J. W. Ahn, “Analysis of passive boost power converter for three-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2961-2971, 2010.
[55] K. Chimata, N. Hoshi and J. Haruna, “Characteristics of switched reluctance motor drive circuit with voltage boost function without additional reactor,” in Proc. IEEE Power Electron., 2012, pp. 1-6.
[56] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” Proc. IEE-Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[57] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[58] H. C. Chang, C. H. Chen, Y. H. Chiang and W. Y. Sean and C. M. Liaw, “Establishment and control of a three-phase switched reluctance motor drive using intelligent power modules,” IET Elect. Power Appl., vol. 4, no. 9, pp. 772-782, 2010.

D. Modeling and Dynamic Control
[59] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000.
[60] K. I. Hwu, “Development of a switched reluctance motor drive,” Ph.D. Dissertation, Department of Electric Engineering, National Tsing Hua Univ., R.O.C., 2001.
[61] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
[62] L. Chenjie, W. Wei, M. McDonough and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, Feb. 2012.
[63] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
[64] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[65] G. Gallegos-Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines” in Proc. Ind. Appl., 2002, vol. 2, pp. 1212-1218.
[66] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[67] Z. Lin, D. Reay, B. Williams and X. He, “High-performance current control for switched reluctance motors based non-line estimated parameters,” IET Elect. Power Appl., vol. 4, no.1, pp. 67-74, 2010.
[68] S. Bolognani and M. Zigiotto, “Fuzzy logic control of a switched reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 32, no. 5, pp. 1063-1068, 1996.
[69] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[70] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
[71] C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[72] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” Proc. IET-Electric Power Appl., vol. 148, no. 4, pp345-353, 2001.
[73] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
E. Commutation Instant Tuning
[74] J. Y. Chai, Y. W. Lin and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” in IEE Proc. Elec. Power Appl., vol. 153, no. 3, pp. 384-360, 2006.
[75] J. Y. Chai and C. M. Liaw, “Reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling.” IET Electric Power Applications, vol. 4, no. 5, pp. 380-396, May 2010.
[76] R. Orthmann and H. P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. IEE Conf. Power Electron. and Appl., 1993, vol. 6, pp. 20-25.
[77] J. J. Gribble, P. C. Kjaer, C. Cossar and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
[78] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[79] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[80] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[81] S. A. Fatemi, H. M. Cheshmehbeigi and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
F. Front-End Converters
[82] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
[83] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
[84] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
[85] J. Silvestre, “Half-bridge bidirectional DC-DC converter for small electric vehicle,” in Proc. IEEE Power Electron., 2008, pp. 884-888.
[86] Y. Du, X. Zhou, S. Bai and S. Lukic, “Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks,” in Proc. IEEE APEC, 2010, pp.1145-1151.
[87] L. Kumar and S. Jain, “A multiple input dc-dc converter for interfacing of battery/ultracapacitor in EVs/HEVs/FCVs,” in Proc. IEEE IICPE, 2012, pp. 1-6.
[88] O. C. Onar, J. Kobayashi and A. Khaligh, “A fully directional universal power electronic interface for EV, HEV, and PHEV Applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5489-5498, 2013.
[89] O. Hegazy, J. V. Mierlo and P. Lataire, “Analysis, modeling, and implementation of a multi-device interleaved DC/DC converter for fuel cell hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 11, pp.4445-4458, Nov. 2012.
[90] S. Zhang and X. Yu, “Control strategy to achieve minimum/zero input current ripple for the interleaved boost converter in photovoltaic/fuel cell power conditioning system,” in Proc. IEEE ECCE., 2012, pp. 4301-4306.
[91] J. Blanes, R. Gutierrez, A. Garrigos, J. Lizan and J. Cuadrado, “Electric cehicle battery life extension using ultracapacitors and an FPGA controlled interleaved buck boost converter,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5940-5948, Dec. 2013.
G. Switch-Mode Rectifiers and G2V Operation
[92] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[93] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[94] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[95] F. J. Perez-Pinal and I. Cervantes, “Multi-reconfigurable power system for EV applications,” in Proc. EPE-PEMC, 2006, pp. 491-495.
[96] X. Zhou, S. Lukic, S. Bhattacharya and A. Huang, “Design and control of grid-connected converter in bi-directional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE VPPC., 2009, pp. 1716-1721.
[97] S. Lacroix, E. Laboure and M. Hilairet, “An integrated fast battery charger for electric vehicle,” in Proc. IEEE VPPC, 2010, pp. 1-6.
[98] S. Haghbin, K. Khan, S. Lundmark, M. Alaküla, O. Carlson, M. Leksell and O. Wallmark, “Integrated chargers for EV’s and PHEV’s: examples and new solutions,” in Proc. ICEM, 2010, pp. 1-6.
[99] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no.5, pp. 2151-2169, 2012.
[100] S. Haghbin, S. Lundmark, M. Alakula and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., pp. 1-14, 2012.
[101] Jianing Liang, Guoqing Xu, Linni Jian and Ming Chang, “Analysis parking position of integrated switched reluctance motor drive system with on-board charger for EV,” in Proc. IEEE VPPC, 2012, pp.72-77.
H. V2H/V2G Operations
[102] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 1st ed. New York: John Wiley & Sons, 2003.
[103] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2002.
[104] X. Yaosuo, C. Liuchen and S. Pinggang, “Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview,” in Proc. IPEMC, 2004, vol. 3, pp. 1118-1123.
[105] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[106] B. S. Prasad, S. Jain and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
[107] X. Zhou, G. Wang, S. Lukic, S. Bhattacharya and A. Huang, “Multi-function bi-directional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE ECCE., pp. 3930-3936, 2009.
[108] F. Berthold, B. Blunier, D. Bouquain, S. Williamson and A. Miraoui, “PHEV control strategy including vehicle to home (V2H) and home to vehicle (H2V) functionalities,” in Proc. IEEE VPPC., 2011, pp. 1-6.
[109] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” in IEE Proc. Elec. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
[110] C. G. C. Branco, C. M. T. Cruz, R. P. Torrico-Bascope and F. L. M. Antunes, “A non-isolated single-phase UPS topology with 110V/220V input-output voltage,” in Proc. IEEE IECON, 2005, pp. 930-935.
[111] B. Kramer, S. Chakraborty and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
[112] A. K. Verma, B. Singh and D. T. Shahani, “Grid to vehicle and vehicle to grid energy transfer using single-phase bidirectional AC-DC converter and bidirectional DC-DC converter,” in Proc. IEEE ICEAS., 2011, pp. 1-5.
[113] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559-564, 2012.
[114] W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505, May 2012.
[115] M. A. Khan, I. Husain and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power flow between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
[116] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5673-5689, 2013.
[117] O. Onar, J. Kobayashi and A. Khaligh, “A multi-level grid interactive bi-directional AC/DC-DC/AC converter and a hybrid battery/ultra-capacitor energy storage system with integrated magnetics for plug-in hybrid electric vehicles,” in Proc. IEEE APEC., 2011, pp. 829-835.
[118] T. S. Ustun, C. R. Ozansoy and A. Zayegh, “Implementing Vehicle-to-Grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, Jun. 2013.
I. Others
[119] P. H. Yi, “An electric vehicle switched-reluctance motor drive with battery/super-capacitor hybrid energy storage and grid-to-vehicle/vehicle-to-grid functions,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *