帳號:guest(3.144.99.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡昆宏
作者(外文):Tsai, Kun-Hung
論文名稱(中文):分切合整數位控制與兩相或空間向量調變之三相雙向換流器性能比較
論文名稱(外文):Performance Comparison between the Three-Phase Bi-Directional Inverters with D-Σ Digital Control and TPM or SVPWM
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):羅有綱
潘晴財
陳鴻祺
吳財福
口試委員(外文):Yu-Kang Lo
Ching-Tsai Pan
Hung-Chi Chen
Tsai-Fu Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061602
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:95
中文關鍵詞:分切合整數位控制兩相調變空間向量調變寬廣感值變化雙向換流器
外文關鍵詞:D-Σ digital controlTPMSVPWMwide inductance variationinverter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:519
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
本研究提出一個以分切合整數位控制為基礎的三相雙向併網型換流器,其中所用的調變方式,包含兩相調變(TPM)與空間向量調變(SVPWM)。此雙向換流器能夠操作在市電併聯模式、整流兼功因修正模式、功因超前模式以及功因落後模式。本研究所採用之控制法則,允許寬電感值變化,能顯著降低電感鐵芯之尺寸。分切合整數位控制,是在一個開關週期中,加總各部分電感電流變化量之後,直接推導出控制法則,可克服傳統控制法所採用的abc至dq座標轉換之限制。本文將推導兩相與空間向量調變下之分切合整控制法則,其中兩相調變包含兩種以不同零交越為區間分隔的控制法則,首先介紹本研究再研究初期採用的以電流零交越為區間分隔,接著將說明以電流零交越為區間分隔之缺點,提出以電壓零交越為區間分隔取代先前的以電流零交越為區間分隔。再推導兩相與空間向量調變的控制法則中,將利用分切合整數位控制之轉換矩陣,進一步簡化控制法則的推導過程。在設計與實現上,將量測不同電流所對應的電感值,並儲存至單晶片微控制中,以利控制器能夠每週期調變迴路增益,而本研究所採用的微控制器為RX62T使控制器能實現複雜的數位控制運算。在介紹完兩相與空間向量調變之後,將依據四項性能指標進行差異比較。本研究實作一部10 kVA三相雙向換流器來驗證以上之分析和討論。
This paper presents a division-summation (D-Σ) digital control for a three-phase bi-directional grid-tied inverter with either two-phase modulation (TPM) or space vector pulse-width modulation (SVPWM). The bi-directional inverter can fulfill grid connection and rectification with power factor correction and PF leading and PF lagging, and it can cover wide inductance variation, reducing core size significantly. The proposed D-Σ digital approach summarizes all of the individual inductor-current variations over one switching cycle to derive control laws directly, which can overcome limitations of abc to dq frame transformation. A universal form of the duty-ratio control laws for TPM and SVPWM is introduced and a D-Σ transformation matrix is identified for simplifying the control-law derivation. In the design and implementation, the inductances corresponding to various inductor currents are measured and tabulated into a single-chip microcontroller for tuning loop gain cycle by cycle, ensuring stable operation. The control laws based on TPM and SVPWM have been derived in detail and their feature comparison has been also presented. Measured results from a 10 kVA 3f bi-directional inverter have been presented to confirm the control-law derivation and discussion.
摘 要 I
Abstract II
誌謝 III
目 錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 論文大綱 8
第二章 分切合整數位控制 9
2.1 換流器架構 9
2.2 兩相調變 10
2.2.1 以電流零交越為區間分隔 10
2.2.2 以電壓零交越為區間分隔 24
2.3 空間向量調變 27
2.4 分切合整轉換矩陣 30
第三章 控制韌體規劃 31
3.1 微控制器介紹 31
3.2 控制流程 34
3.2.1 主程式流程 34
3.2.2 中斷副程式流程 35
第四章 周邊電路設計 37
4.1 輔助電源 37
4.2 電壓保護電路 39
4.3 市電電壓偵測電路 39
4.4 直流鏈電壓偵測電路 41
4.5 三相換流器輸出電流偵測電路 42
4.6 開關隔離驅動電路 43
第五章 性能比較 44
5.1 電流漣波 45
5.2 直流鏈電壓使用率 50
5.3 區間轉換 54
5.4 動態響應 57
第六章 電路製作與量測驗證 62
6.1 電氣規格 62
6.2 實務考量 63
6.2.1 電感值變化 63
6.2.2 零交越判斷電路 66
6.2.3 開關驅動電壓 68
6.2.4 區間轉換電流失真改善 70
6.3 實測結果 72
6.3.1 市電併聯模式 72
6.3.2 整流兼功因修正模式 76
6.3.3 功因超前模式 78
6.3.4 功因落後模式 81
6.4 性能比較驗證 84
6.5 討論 90
第七章 結論與未來研究方向 91
7.1 結論 91
7.2 未來研究方向 92
參考文獻 93
[1]M. P. Kazmierkowski, and L. Malesani, “Current Control Techniques for Three-Phase Voltage-Source PWM Converters: A Survey,” IEEE Trans. on Industrial Electronics, vol. 45, no. 5, pp. 691-703, Oct. 1998.
[2]K. Zhou and D. Wang, “Relationship Between Space-Vector Modulation and Three-Phase Carrier-Based PWM- A C omprehensive Analysis,” IEEE Trans. on Industrial Electronics, vol. 49, no. 1, pp. 186-196, Feb. 2002.
[3]H. W. V. D. Broeck, H.-C. Skudelny, “Analysis and realization of a pulsewidth modulator based on voltage space vectors,” IEEE Trans. on Industrial Applications, vol. 24, no. 1, pp.142-150, Jan. /Feb. 1988.
[4]Q. Zeng, L. Chang and P. Song, “SVPWM-Based Current Controller with Grid Harmonic Compensation for Three-Phase Grid-Connected VSI,” 35rd Annu. IEEE PESC. Conf., 2004, pp.2494–2500.
[5]Y.-S. Lai and S.R. Bowes, “A New Suboptimal PWM Technique for Per-Phase Modulation and Space Vector Modulation,” IEEE Trans. on Energy Conversion, vol. 12, vo. 4, pp. 310-316, Dec. 1997.
[6]H. Lu, W. Qu, X. Cheng, Y. Fan, and X. Zhang,“A Novel PWM Technique With Two-Phase Modulation,” IEEE Trans. on Power Electronics, vol. 22, no. 6, pp. 2403-2409, Nov. 2007.
[7]Y.-S. Lai, and S. R. Bowes, “A universal space vector modulation strategy based on regular-sampled pulse-width modulation,” in Proc. of the IEEE IECON, 1996, pp. 120-126.
[8]Y.-C. Lim, S.-Y. Oh, Y.-G. Jung, and J.-G. Kim,“A Two-Phase Separately Randomized Pulse Position PWM (SRP-PWM) Scheme with Low Switching Noise Charateristics over the Entire Modulation Index,” IEEE Trans. on Power Electronics, vol. 27, no.1, pp. 362-369, Jan. 2012.
[9]J. Hobraiche, J.-P. Vilain, P. Macret, and N. Patin, “A New PWM Strategy to Reduce the Inverter Input Current Ripples,” IEEE Trans. on Power Electronics, vol. 24, no. 1, pp. 172-180, Jan 2009.
[10]A. N.-Sani, and S. Filizadeh, “An Optimized Space Vector Modulation Sequence for Improved Harmonic Performance,” IEEE Trans. on Industrial Electronics, vol. 56, no. 8, pp. 2894-2903, Aug. 2009.
[11]G. Narayanan, Di Zhao, H. K. Krishnamurthy, R. Ayyanr, and V. T. Ranganathan, “Space Vector Based Hybrid PWM Techniques for Reduced Current Ripple,” IEEE Trans. on Industrial Electronics, vol. 55, no. 4, pp. 1614-1627, April 2008.
[12]Y. A. I. Mohamed and E. F. El-Saadany, “An Improved Deadbeat Current Control Scheme with A Novel Adaptive Self-Tuning Load Model for A Three-Phase PWM Voltage-Source Inverter,” IEEE Trans. on Industrial Electronics, vol. 54, no. 2, pp. 747-759, April 2007.
[13]A. Bouafia, J. P. Gaubert, and F. Krim, “Predictive Direct Power Control of Three-Phase Pulse Width Modulation (PWM) Rectifier Using Space-Vector Modulation (SVM),” IEEE Trans. on Power Electronics, vol. 25, no. 1, pp. 228-236, Jan. 2010.
[14]M. Mohseni, and S. M. Islam, “New Vector-Based Hysteresis Current Control Scheme for Three-Phase PWM Voltage-Source Inverters,” IEEE Trans. on Power Electronics, vol. 25, no. 9, pp. 2299-2309, Sep. 2010.
[15]S. Saetieo, and D. A. Torrey, “Fuzzy logic control of a space-vector PWM current regulator for three-phase power converters,” IEEE Trans. on Power Electronics, vol. 13, no. 3, pp. 419-426, May 1998.
[16]M. C. Cavalcanti, E. R. C. da Silva, A. M. N. Lima, C. B. Jacobina, “Reducing losses in three-phase PWM pulsed DC-link voltage-type inverter systems,” IEEE Trans. on Industrial Electronics, vol. 38, no. 4, pp. 1114-1122, July/Aug. 2002.
[17]T. Fu Wu, C.-H. Chang, Li-C. Lin, Y.-C. Chang, and Y.-R. Chang, “Two-Phase Modulated Digital Control for Three-Phase Bidirectional Inverter With Wide Inductance Variation,” IEEE Trans. on Power Electronics, vol. 28, no. 4, pp. 1598-1607, April 2013.
[18]張智豪,“允許寬廣電感值之三相雙向換流器分切合整數位控制”,國立中正大學電機工程研究所博士論文,2013年7月。
[19]陳至鈞,“三相三線式20kW雙向換流器研製”,國立中正大學電機工程研究所碩士論文,2012年7月。
[20]林庭世,“三相三線式雙向換流器研製”,國立中正大學電機工程研究所碩士論文,2010年7月。
[21]林奕良,“三相雙向換流器之功率補償機制”,國立中正大學電機工程研究所碩士論文,2012年7月。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *