帳號:guest(18.191.233.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王敬維
作者(外文):Wang, Ching-Wei
論文名稱(中文):串聯型△接全橋轉換器之電壓平衡控制研究
論文名稱(外文):Research of Voltage Balancing Control of the Delta-connected Cascaded H-Bridge Converters
指導教授(中文):鄭博泰
指導教授(外文):Cheng, Po-Tai
口試委員(中文):連國龍
侯中權
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061601
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:73
中文關鍵詞:串聯型△接全橋轉換器電壓平衡控制串聯型△接全橋轉換器之電壓平衡控制研究
外文關鍵詞:Delta-connected CascadedH-Bridge ConvertersVoltage Balancing ControlResearch of Voltage Balancing Control of the Delta-connected Cascaded H-Bridge Converters
相關次數:
  • 推薦推薦:0
  • 點閱點閱:88
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文在串聯型△接的系統架構上,提出一種新的電壓平衡控制。核心想法是從功率的觀點分析電路系統,釐清不平衡功率形成的原因,並進而產生零序電流命令去平衡掉這些使得電壓發散的不平衡功率。
此外,串聯型△接全橋轉換器通常應用於電弧爐補償,針對電弧爐補償,主要需要三種補償控制,分別是虛功補償、負序電流補償、低頻實功補償。因此本篇論文在補償負序電流的設定上,去探討串聯型全橋轉換器在電壓平衡控制上的表現。
不僅如此,本篇論文也把串聯型Y接全橋轉換器,在補償負序電流的情況下,去探討對電壓平衡控制上的影響,並釐清在補償負序電流的情況下,最需考量的因素成分,進而設計出針對此情況下,所需的電壓命令值,最終達成補償負序電流的情況下,同時能完成電壓平衡控制的目標。
This thesis propose a new dc bus voltage balancing control towards the modular multilevel cascaded converter (MMCC) with the circuit configuration of singe-delta bridge cells (SDBC). The core idea is to generate a zero-sequence current (ZSC) command from the perspective of power flow analysis to balance the unbalanced clustered power.
In addition, the MMCC-SDBC usually serves in the application of flicker compensation towards electrical arc furnace (EAF). For the flicker compensation of EAF, it usually requires compensating reactive power, negative-sequence current, and low-frequency active power. As a result, this thesis research the dc bus voltage balancing control towards MMCC under the condition of compensating negative-sequence current.
Furthermore, this thesis also analyzes the influences of negative-sequence current on the MMCC with the circuit configuration of singe-star bridge cells (SSBC). It takes these influences of negative-sequence current into consideration, then it designs a dc bus voltage command to make the MMCC-SSBC can achieve the goal of balancing dc bus voltages and compensating negative sequence current at the same time.
摘要 i
Abstract ii
誌謝 iii
Contents iv
List of Tables vii
List of Figures ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Organization of the Thesis 3
Chapter 2 Literature Review 4
2.1 Introduction 4
2.2 Modulation Technique 5
2.3 DC buses Voltage Balancing Control in SDBC & SSBC 7
2.3.1 Akagi’s DC Bus Voltage Balancing Control in SDBC 7
2.3.2 Laboratory’s DC Bus Voltage Balancing Control in SSBC 12
2.4 Summary 18
Chapter 3 Operation Principles 19
3.1 Introduction 19
3.2 Power Flow Analysis 20
3.2.1 Overall Active power Control 21
3.2.2 Reactive Power Control 23
3.2.3 Clustered Voltage Balancing Control Based on ZSC in SDBC 24
3.2.4 Individual Voltage Balancing Control in SDBC 29
3.3 The Design of DC Bus Voltage Command under NSC Compensation 32
3.3.1 The Design of DC Bus Voltage Command towards SSBC 32
3.3.2 The Design of DC Bus Voltage Command towards SDBC 35
Chapter 4 Simulation Results 38
4.1 Introduction 38
4.1.1 Environment Set Up of SDBC 38
4.1.2 Environment Set Up of SSBC 40
4.2 Comparison of Proposed ZSC method and Akagi’s ZSC method 42
4.3 Comparison of Proposed ZSC in SDBC and the Laboratory’s ZSV in SSBC 44
4.4 Comparison of Proposed ZSC With and Without Feed-forward Term 47
4.5 Verrify the Designed Methods of DC Bus Voltage Command…..……………..
under NSC Compensation 48
4.5.1 Verrify the Designed method of DC Bus Voltage towards SSBC 49
4.5.2 Verrify the Designed method of DC Bus Voltage towards SDBC 52
4.6 Summary 55
Chapter 5 Laboratory Test Results 56
5.1 Introduction 56
5.2 Comparison of Proposed ZSC method and Akagi’s ZSC method 56
5.3 Comparison of Proposed ZSC in SDBC and the Laboratory’s ZSV in SSBC 60
5.4 Comparison of Proposed ZSC With and Without Feed-forward Term 64
5.5 Verrify the Designed Methods of DC Bus Voltage Command…..……………..
under NSC Compensation 65
5.5.1 Verrify the Designed method of DC Bus Voltage towards SSBC 66
5.5.2 Verrify the Designed method of DC Bus Voltage towards SDBC 68
5.6 Summary 69
Chapter 6 Conclusion and Future Work 70
6.1 Conclusion 70
6.2 Future work 71
Reference 72
[1] Han, Chong, et al. "Evaluation of cascade-multilevel-converter-based STATCOM for arc furnace flicker mitigation." Industry Applications, IEEE Transactions on43.2 (2007): 378-385.
[2] Montanari, G. C., et al. "Arc-furnace model for the study of flicker compensation in electrical networks." Power Delivery, IEEE Transactions on 9.4 (1994): 2026-2036.
[3] Schauder, Colin. "STATCOM for compensation of large electric arc furnace installations." Power Engineering Society Summer Meeting, 1999. IEEE. Vol. 2. IEEE, 1999.
[4] Hirofumi Akagi, Fellow, IEEE, Shigenori Inoue, Member, IEEE, and Tsurugi Yoshii, “Control and Performance of a Transformerless Cascade PWM STATCOM With Star Configuration,” IEEE Transactions On Industry Applications, vol. 43, no. 4, July/August 2007.
[5] N. S. Choi et al., “Modeling and analysis of a static var compensator using multilevel voltage source inverter,” in Conf. Rec. IEEE-IAS Annu. Meeting, 1993, pp. 901–908.
[6] F. Z. Peng and J. S. Lai, “A static var generator using a staircase waveform multilevel voltage-source converter,” in Proc. 7th Int. Power Quality Conf., Dallas/Ft. Worth, TX, Sept. 17–22, 1994, pp. 58–66.
[7] F. Z. Peng, J. S. Lai, J. W. McKeever, and J. VanCoevering, “A multilevel voltage-source inverter with separate DC sources for static var generation,” IEEE Trans. Ind. Applicat., vol. 32, pp. 1130–1138, Sept./Oct. 1996.
[8] J. Lai and F. Peng, “Multilevel converters—A new breed of power converters,” IEEE Trans. Ind. Applicat., vol. 32, pp. 509–517, May/June 1996.
[9] Hirofumi Akagi, Fellow, IEEE “Classification, Terminology, and Application of the Modular Multilevel Cascade Converter (MMCC) ,” IEEE Trans On Power Electronics, vol. 26, no. 11, November 2011.
[10] Akagi, Hirofumi. "Classification, terminology, and application of the modular multilevel cascade converter (MMCC)." Power Electronics, IEEE Transactions on 26.11 (2011): 3119-3130.
[11] Hagiwara, Makoto, Ryo Maeda, and Hirofumi Akagi. "Negative-sequence reactive-power control by a PWM STATCOM based on a modular multilevel cascade converter (MMCC-SDBC)." Industry Applications, IEEE Transactions on 48.2 (2012): 720-729.
[12] Sreenivasarao, D., Pramod Agarwal, and B. Das. "A carrier-transposed modulation technique for multilevel inverters." Power Electronics, Drives and Energy Systems (PEDES) & 2010 Power India, 2010 Joint International Conference on. IEEE, 2010.
[13] Leon, Jose I., et al. "Unidimensional modulation technique for cascaded multilevel converters." Industrial Electronics, IEEE Transactions on 56.8 (2009): 2981-2986.
(此全文未開放授權)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *