帳號:guest(52.14.2.251)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳鈞垣
作者(外文):Chen, Chun-Yuan
論文名稱(中文):透過卜瓦松過程耦合下非線性隨機耦合網路的強健同步化探討與最小耦合設計
論文名稱(外文):Robust H∞ Synchronization of Nonlinear Stochastic Coupling Networks through Poisson Diffusions and Minimal Coupling Design
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):李柏坤
林澤
邱偉育
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061598
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:71
中文關鍵詞:機率漸進同步性同步強健性卜瓦松過程最小耦合設計模糊系統
外文關鍵詞:Asymptotical synchronizability in probabilityRobust synchronizabilityPoisson diffusion processMinimal coupling designFuzzy system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:485
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文探討一個非線性隨機耦合網路的強健同步化問題。針對一個透過卜瓦松過程耦合下的非線性隨機耦合網路,我們探討了漸進同步化與強健同步化的特性。對於漸進同步化與為了能有效抑制外部雜訊的強健同步化探討,各自所對應的Hamilton-Jacobi不等式條件將被提出。然而,針對Hamilton-Jacobi不等式直接求解有技術上的困難;因此,本篇提出了Takagi-Sugeno模糊系統使線性動態系統近似非線性動態系統從而簡化對Hamilton-Jacobi不等式求解的難度。由於Takagi-Sugeno模糊系統的提出,Hamilton-Jacobi不等式可被轉換為線性矩陣不等式。藉由Matlab的LMI-toolbox的使用,漸進同步化與強健同步化的條件將能較簡單地被驗正。隨後,對於一個透過卜瓦松過程耦合下的非線性隨機耦合網路,本篇提出了一個在不失漸進同步化與強健同步化的特性下,刪減多餘的耦合來達到最小耦合設計。與此同時,結合線性矩陣不等式本篇提出了一個判斷準則來找尋多餘且可被移除的耦合。藉由該判斷準則,一個簡易的最小耦合設計流程將被建立。文末,最小耦合設計將應用於十個羅倫斯震盪器所形成的非線性隨機耦合網路。經由最小耦合設計流程建構出一個不失漸進同步化與強健同步化的最小耦合網路。
In this paper, we discuss a robust synchronization problem for nonlinear stochastic coupling networks through Poisson diffusions. In the robust synchronization problem, we study the asymptotical synchronizability in probability of the nonlinear stochastic coupling networks through Poisson diffusion via a Hamilton-Jacobi inequality (HJI) criterion. Further, in order to effectively filtrate external disturbances of the nonlinear stochastic coupling networks, synchronization robustness can be guaranteed by solving a HJI. That is, by solving these two HJI criteria, not only the asymptotical synchronizability in probability, but also the robust synchronizability is guaranteed. For simplifying the HJI criteria, linear matrix inequality (LMI) criteria are proposed based on the Takagi-Sugeno (T-S) fuzzy model. Finally, we propose an algorithm for the minimal coupling design to reduce the redundant Poisson diffusion couplings of the coupling networks without losing its asymptotical synchronizability in probability and synchronization robustness. A simulation example is provided to illustrate the minimal coupling design procedure and verify the robust synchronizability.
摘要...(i)
Abstract...(iii)
誌謝...(iv)
Contents...(v)
List of Figures...(vi)
I. Introduction...(1)
II. Preliminaries and Mathematical Models...(6)
III. Synchronization Error Dynamic and Analysis of Synchronizability...(12)
IV. Analysis of Synchronizability via T-S Fuzzy Approach...(17)
V. Robust Synchronization of the Nonlinear Stochastic Coupling Networks with External Disturbances...(21)
VI. Robust Synchronization Design with Minimal Coupling...(29)
VII. Simulation Example...(45)
VIII. Conclusion...(56)
Appendix...(57)
Reference...(65)
[1] F. J. Jhou, J. Juang, and Y. H. Liang, "Multistate and Multistage Synchronization of Hindmarsh-Rose Neurons With Excitatory Chemical and Electrical Synapses," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 59, pp. 1335-1347, Jun 2012.
[2] J. G. Lu and D. J. Hill, "Global asymptotical synchronization of chaotic Lur'e systems using sampled data: A linear matrix inequality approach," IEEE Transactions on Circuits and Systems Ii-Express Briefs, vol. 55, pp. 586-590, Jun 2008.
[3] J. Q. Lu, J. D. Cao, and D. W. C. Ho, "Adaptive stabilization and synchronization for chaotic Lur'e systems with time-varying delay," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 55, pp. 1347-1356, Jun 2008.
[4] R. R. Nair and L. Behera, "Tracking Control of Spacecraft Formation Flying using Fuzzy Sliding Mode Control with Adaptive Tuning Technique," 2013 IEEE International Conference on Fuzzy Systems (Fuzz - IEEE 2013), 2013.
[5] H. Rezaee and F. Abdollahi, "Synchronized Cross Coupled Sliding Mode Controllers for Cooperative UAVs with Communication Delays," 2012 IEEE 51st Annual Conference on Decision and Control (Cdc), pp. 3116-3121, 2012.
[6] B. Liu, W. L. Lu, and T. P. Chen, "Synchronization in Complex Networks With Stochastically Switching Coupling Structures," IEEE Transactions on Automatic Control, vol. 57, pp. 754-760, Mar 2012.
[7] K. H. Movric and F. L. Lewis, "Cooperative Optimal Control for Multi-Agent Systems on Directed Graph Topologies," IEEE Transactions on Automatic Control, vol. 59, pp. 769-774, Mar 2014.
[8] Z. K. Li, Z. S. Duan, G. R. Chen, and L. Huang, "Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 57, pp. 213-224, Jan 2010.
[9] Z. K. Li, Z. S. Duan, and G. R. Chen, "Global Consensus Regions of Multi-Agent Systems with Nonlinear Dynamics," 2010 8th World Congress on Intelligent Control and Automation (Wcica), pp. 580-585, 2010.
[10] L. Scardovi and R. Sepulchre, "Synchronization in networks of identical linear systems," Automatica, vol. 45, pp. 2557-2562, Nov 2009.
[11] B. S. Chen, C. H. Chiang, and S. K. Nguang, "Robust H∞ Synchronization Design of Nonlinear Coupled Network via Fuzzy Interpolation Method," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 58, pp. 349-362, Feb 2011.
[12] S. J. Ho and B. S. Chen, "Robust H∞ Synchronization Behavior for Nonlinear Stochastic Coupled Networks with Time Delays and Noises," 2012 IEEE International Conference on Fuzzy Systems (Fuzz-IEEE), 2012.
[13] G. H. Wen, Z. S. Duan, G. R. Chen, and W. W. Yu, "Consensus Tracking of Multi-Agent Systems With Lipschitz-Type Node Dynamics and Switching Topologies," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 61, pp. 499-511, Feb 2014.
[14] C. W. Wu and L. O. Chua, "Synchronization in an Array of Linearly Coupled Dynamical-Systems," IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, vol. 42, pp. 430-447, Aug 1995.
[15] Y. Y. Liu and J. Zhao, "Generalized Output Synchronization of Dynamical Networks Using Output Quasi-Passivity," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 59, pp. 1290-1298, Jun 2012.
[16] R. Olfati-Saber, J. A. Fax, and R. M. Murray, "Consensus and cooperation in networked multi-agent systems," Proceedings of the IEEE, vol. 95, pp. 215-233, Jan 2007.
[17] A. Sarlette and R. Sepulchre, "Consensus Optimization on Manifolds," Siam Journal on Control and Optimization, vol. 48, pp. 56-76, 2009.
[18] W. W. Yu, G. R. Chen, and M. Cao, "Consensus in Directed Networks of Agents With Nonlinear Dynamics," IEEE Transactions on Automatic Control, vol. 56, pp. 1436-1441, Jun 2011.
[19] J. Zhao, D. J. Hill, and T. Liu, "Synchronization of Dynamical Networks With Nonidentical Nodes: Criteria and Control," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 58, pp. 584-594, Mar 2011.
[20] L. M. Pecora and T. L. Carroll, "Master stability functions for synchronized chaos in arrays of oscillators," Iscas '98 - Proceedings of the 1998 International Symposium on Circuits and Systems, Vols 1-6, pp. C562-C567, 1998.
[21] A. Bogojeska, M. Mirchev, I. Mishkovski, and L. Kocarev, "Synchronization and Consensus in State-Dependent Networks," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 61, pp. 522-529, Feb 2014.
[22] P. Lin, Y. Ha, and L. Li, "Distributed robust H∞ consensus control in directed networks of agents with time-delay," Systems & Control Letters, vol. 57, pp. 643-653, Aug 2008.
[23] B. S. Chen, W. H. Chen, and H. L. Wu, "Robust H2/H∞ Global Linearization Filter Design for Nonlinear Stochastic Systems," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 56, pp. 1441-1454, Jul 2009.
[24] W. H. Zhang, B. S. Chen, and C. S. Tseng, "Robust H∞ filtering for nonlinear stochastic systems," IEEE Transactions on Signal Processing, vol. 53, pp. 589-598, Feb 2005.
[25] W. H. Chen and B. S. Chen, "Robust stabilization design for nonlinear stochastic system with Poisson noise via fuzzy interpolation method," Fuzzy Sets and Systems, vol. 217, pp. 41-61, Apr 16 2013.
[26] I. Kolmanovsky and T. Maizenberg, "Optimal containment control for a class of stochastic systems perturbed by Poisson and Wiener processes," IEEE Transactions on Automatic Control, vol. 47, pp. 2041-2046, Dec 2002.
[27] I. V. Kolmanovsky and T. L. Maizenberg, "Stochastic stability, estimation and control in systems driven by jump-difffusion disturbances and their automotive applications," Proceedings of the 45th IEEE Conference on Decision and Control, Vols 1-14, pp. 4194-4199, 2006.
[28] W. B. Zhang, Y. Tang, X. T. Wu, and J. A. Fang, "Synchronization of Nonlinear Dynamical Networks With Heterogeneous Impulses," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 61, pp. 1220-1228, Apr 2014.
[29] J. P. Keener and J. Sneyd, Mathematical physiology. New York: Springer, 1998.
[30] L. A. Boyer, T. I. Lee, M. F. Cole, S. E. Johnstone, S. S. Levine, J. R. Zucker, et al., "Core transcriptional regulatory circuitry in human embryonic stem cells," Cell, vol. 122, pp. 947-956, Sep 23 2005.
[31] D. B. West, Introduction to graph theory, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2001.
[32] X. Q. Qi, E. Fuller, Q. Wu, Y. Z. Wu, and C. Q. Zhang, "Laplacian centrality: A new centrality measure for weighted networks," Information Sciences, vol. 194, pp. 240-253, Jul 1 2012.
[33] F. R. K. Chung, Spectral graph theory. Providence, R.I.: Published for the Conference Board of the mathematical sciences by the American Mathematical Society, 1997.
[34] R. Z. Khasminskii. (2012). Stochastic stability of differential equations (2nd ed.). Available: http://dx.doi.org/10.1007/978-3-642-23280-0
[35] T. Takagi and M. Sugeno, "Fuzzy Identification of Systems and Its Applications to Modeling and Control," IEEE Transactions on Systems Man and Cybernetics, vol. 15, pp. 116-132, 1985.
[36] S. P. Boyd, Linear matrix inequalities in system and control theory. Philadelphia: Society for Industrial and Applied Mathematics, 1994.
[37] K. Tanaka and H. O. Wang, Fuzzy control systems design and analysis : a linear matrix inequality approach. New York: Wiley, 2001.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *