|
[1] A. Temko and C. Nadeu, “Acoustic event detection in meeting-room environments,” Pattern Recognit. Lett., vol. 30, no. 14, pp. 1281–1288, Oct. 2009. [2] A. H. Kam and L. Shue, “An Automatic Acoustic Bathroom Monitoring System,” 2005 IEEE Int. Symp. Circuits Syst., vol. 2, pp. 1750–1753, 2005. [3] A. J. Eronen, V. T. Peltonen, J. T. Tuomi, A. P. Klapuri, S. Fagerlund, T. Sorsa, G. Lorho, and J. Huopaniemi, “Audio-based context recognition,” IEEE Trans. Audio, Speech Lang. Process., vol. 14, no. 1, pp. 321–329, Jan. 2006. [4] T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Context-dependent sound event detection,” EURASIP J. Audio, Speech, Music Process., vol. 2013, no. 1, p. 1, Jan. 2013. [5] D. Giannoulis, E. Benetos, D. Stowell, M. Rossignol, M. Lagrange, and M. D. Plumbley, “Detection and classification of acoustic scenes and events: An IEEE AASP challenge,” IEEE Work. Appl. Signal Process. to Audio Acoust., pp. 1–4, Oct. 2013. [6] T. Kristjansson, S. Deligne, and P. Olsen, “Voicing features for robust speech detection,” INTERSPEECH, pp. 369–372, 2005. [7] J. A. Smith, J. E. Earis, and A. A. Woodcock, “Establishing a gold standard for manual cough counting: video versus digital audio recordings,” Cough, vol. 2, no. 1, p. 6, Jan. 2006. [8] C. Clavel, T. Ehrette, and G. Richard, “Events Detection for an Audio-Based Surveillance System,” IEEE Int. Conf. Multimed. Expo, pp. 1306–1309, 2005. [9] 羅祥友, “基於基頻與倍頻結構之語音偵測研究,” 國立清華大學, 2011. [10] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–286, 1989. [11] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker identification using Gaussian mixture speaker models,” IEEE Trans. Speech Audio Process., vol. 3, no. 1, pp. 72–83, 1995. [12] C.-W. Wu and Y.-W. Liu, “Event-related sounds in residential environment: Classification and outlier rejection,” in National Computer Symposiums, Taichung, Taiwan, 2013. [13] L. Chen, S. Gunduz, and M. Ozsu, “Mixed Type Audio Classification with Support Vector Machine,” IEEE Int. Conf. Multimed. Expo, pp. 781–784, Jul. 2006. [14] H. C. Bao and Z. C. Juan, “The research of speaker recognition based on GMM and SVM,” Int. Conf. Syst. Sci. Eng., pp. 373–375, Jun. 2012. [15] C.-H. Lee, C.-C. Han, and C.-C. Chuang, “Automatic Classification of Bird Species From Their Sounds Using Two-Dimensional Cepstral Coefficients,” IEEE Trans. Audio. Speech. Lang. Processing, vol. 16, no. 8, pp. 1541–1550, Nov. 2008. [16] X. Zhuang, X. Zhou, M. A. Hasegawa-Johnson, and T. S. Huang, “Real-world acoustic event detection,” Pattern Recognit. Lett., vol. 31, no. 12, pp. 1543–1551, Sep. 2010. [17] H. Bhavsar and A. Ganatra, “A Comparative Study of Training Algorithms for Supervised Machine Learning,” Int. J. Soft Comput. Eng., vol. 2, no. 4, pp. 74–81, 2012. [18] A. S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound. 1994. [19] D. Wang and G. J. Brown, Computational Auditory Scene Analysis: Principles, Algorithms, and Applications. Wiley-IEEE Press, 2006. [20] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A blind source separation technique using second-order statistics,” IEEE Trans. Signal Process., vol. 45, no. 2, pp. 434–444, 1997. [21] J.-F. Cardoso, “Blind signal separation: statistical principles,” Proc. IEEE, vol. 86, no. 10, pp. 2009–2025, 1998. [22] E. Vincent, M. Jafari, and S. Abdallah, “Blind audio source separation,” 2005. [23] P. Comon, “Independent component analysis, A new concept?,” Signal Processing, vol. 36, no. 3, pp. 287–314, Apr. 1994. [24] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Networks, vol. 13, no. 4–5, pp. 411–430, Jun. 2000. [25] D. D. Lee and H. S. Seung, “Algorithms for Non-negative Matrix Factorization,” Adv. Neural Inf. Process. Syst., pp. 556–562, 2001. [26] P. Smaragdis and J. C. Brown, “Non-negative matrix factorization for polyphonic music transcription,” IEEE Work. Appl. Signal Process. to Audio Acoust., pp. 177–180, 2003. [27] A. W. Michael A. Casey, “Separation of Mixed Audio Sources By Independent Subspace Analysis,” Int. Comput. Music Conf. Proc., pp. 154–161, 2000. [28] T. Virtanen, “Monaural Sound Source Separation by Nonnegative Matrix Factorization With Temporal Continuity and Sparseness Criteria,” IEEE Trans. Audio, Speech Lang. Process., vol. 15, no. 3, pp. 1066–1074, Mar. 2007. [29] G. D. Forney, “The viterbi algorithm,” Proc. IEEE, vol. 61, no. 3, pp. 268–278, 1973. [30] S. Godbole and S. Sarawagi, “Discriminative methods for multi-labeled classification,” Adv. Knowl. Discov. Data Min., pp. 22–30, 2004. [31] Z. W. R. Alicja Wieczorkowska, Piotr Synak, “Multi-label classification of emotions in music,” Adv. Soft Comput., pp. 307–315, 2006. [32] M. A. Hossan, S. Memon, and M. A. Gregory, “A novel approach for MFCC feature extraction,” Int. Conf. Signal Process. Commun. Syst., pp. 1–5, Dec. 2010. [33] X. Yang, B. Tan, J. Ding, J. Zhang, and J. Gong, “Comparative Study on Voice Activity Detection Algorithm,” Int. Conf. Electr. Control Eng., pp. 599–602, Jun. 2010. [34] M. Moattar and M. Homayounpour, “A simple but efficient real-time voice activity detection algorithm,” EUSIPCO. EURASIP, pp. 2549–2553, 2009. [35] C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167, Jun. 1998. [36] C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995. [37] R. Fletcher, Practical methods of optimization; (2nd ed.). Wiley-Interscience, 1987. [38] H. W. Kuhn and A. W. Tucker, “Nonlinear Programming,” Proc. Second Berkeley Symp. Math. Stat. Probab., pp. 481–492, 1951. [39] “非線性支持向量機器 (Non-linear SVMs) | 逍遙文工作室 on WordPress.com.” [Online]. Available: http://cg2010studio.wordpress.com/2012/05/20/非線性支持向量機器-non-linear-svms/. [Accessed: 17-Jun-2014]. [40] J. Mercer, “Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 209, no. 441–458, pp. 415–446, Jan. 1909. [41] C. Hsu, C. Chang, and C. Lin, “A practical guide to support vector classification,” vol. 1, no. 1, pp. 1–16, 2003. [42] C. Chang and C. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol., pp. 1–39, 2011. [43] A. Temko, C. Nadeu, and J. Biel, “Acoustic event detection: SVM-based system and evaluation setup in CLEAR’07,” Multimodal Technol. Percept. Humans, pp. 354–363, 2008. [44] C. L. Tseng, Y. H. Chen, S. C. Chuang, and H. C. Fu, “Cluster-based support vector machines in text-independent speaker identification,” IEEE Int. Jt. Conf. Neural Networks, vol. 1, pp. 729–734, 2004. [45] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, “Why Does Unsupervised Pre-training Help Deep Learning?,” J. Mach. Learn. Res., vol. 11, pp. 625–660, Mar. 2010. [46] M. Baillie and J. Jose, “Audio-based event detection for sports video,” Image Video Retr., pp. 61–65, 2003. [47] J. Liu, E. Johns, and G.-Z. Yang, “A scene-associated training method for mobile robot speech recognition in multisource reverberated environments,” IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 542–549, Sep. 2011.
|