帳號:guest(3.148.117.64)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳宗軒
作者(外文):Wu, Tsung-Hsuan
論文名稱(中文):使用鰭式場效應電晶體之靜態隨機存取記憶體的缺陷模型分析與診斷方法
論文名稱(外文):Defect Modeling, Analysis and Diagnosis for FinFET-Based SRAM
指導教授(中文):吳誠文
指導教授(外文):Wu, Cheng-Wen
口試委員(中文):呂學坤
金雅琴
洪浩喬
吳誠文
口試委員(外文):Shyue-Kung Lu
King, Ya-Chin
Hao-Chiao Hong
Cheng-Wen Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061592
出版年(民國):103
畢業學年度:103
語文別:英文
論文頁數:66
中文關鍵詞:記憶體測試鰭式場效應電晶體錯誤模型失效分析瑕疵診斷
外文關鍵詞:memory testFinFETfault modelfailure analysisdefect diagnosis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:441
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
近年來隨著元件的微縮、產生許多很難解決的問題,例如短通道效應和高漏電流。為了解決這些問題,改變元件的材料與結構便成了趨勢,而鰭式場效應電晶體則為一種解決方案。鰭式場效應電晶體的極薄基體通常是輕微摻雜,可以減少隨機摻雜擾動效應造成的臨界電壓漂移問題。因此使用鰭式場效應電晶體之靜態隨機存取記憶體將會擁有良好的穩定度和較低的功率消耗。鰭式場效應電晶體擁有自己獨特的缺陷模型基於鰭這種特別的結構。若在製造鰭的過程中有缺陷,有可能導致許多的電晶體損壞。因為根據電路設計布局,鰭有可會被許多電晶體使用。針對這類型的缺陷,我們提出一些準則,幫助我們可以直接從電路圖上找出哪些電晶體使用有缺陷的鰭而同時損壞的,並研究其可能對應的錯誤模型。在實驗中,我們發現有一些小缺陷並不會造成錯誤的邏輯行為,卻會造成可靠度下降。針對這類型的缺陷,我們進一步提出測試方法。為了改進缺陷水平,我們提出一種擁有相當高診斷能力的測試計畫,並且藉由讀取電流感應器的幫助,我們可以根據其測試結果,準確的找出對應的缺陷。而當鰭式場效應電晶體之靜態隨機存取記憶體發生錯誤時,我們會事先建立一個對應表來幫助我們快速找出是哪一種缺陷造成錯誤。在本篇論文,我們針對記憶體細胞中的每個電晶體注入缺陷,並產生可模擬的測試電路。而提出的測試方法在以積體電路為重點的模擬程式裡被驗證過,而程式使用的鰭式場效應電晶體模擬模型是依據PTM網站提供的20奈米低待機功率模型。
FinFET is a solution to the process-scaling problems, such as short channel effect and large leakage. The thin body of FinFET is typically lightly doped, thereby eliminating the threshold voltage deviation caused by random dopant fluctuation effects. The FinFET-based SRAM, therefore, has high stability and low power consumption. However, FinFET has its specific defect models due to the special fin structure. The defects occurred on nanowire could affect fins of multiple transistors according to FinFET-specific layouts. Targeting these defects, we propose some criteria to investigate defect candidates from schematics, then simulating and summarizing the corresponding fault models. In our summary, there are special defects, vague defects, causing no logical fault but leading to reliability degradation, especially in deep sub-micron technology. Focusing on vague defects, we further propose a method to test them. In order to improve defect level, we propose a testing strategy that achieves high diagnosis resolution to identify these defect candidates with read current sensor support. A defect dictionary is finally built by this method, assisting in fast defect diagnosis for the FinFET-based SRAM in the future. In this thesis, we inject these defects respectively to each transistor in FinFET-based 6T-SRAM circuits for simulation. The testing strategy has been validated by SPICE simulation using 20 nm low-standby power (LSTP) model cards from the PTM website (Predictive Technology Model).
Chapter 1 Introduction 1
1.1 Motivation & Background 1
1.2 Objective 3
1.3 Organization 3
Chapter 2 FinFET Structures and Defect Models 4
2.1 FinFET Device 4
2.2 Defect Models for FinFET Structures 5
2.2.1 Missing Fins of FinFET 5
2.2.2 Stuck-on Fins of FinFET 6
2.3 Defect Models for FinFET-based SRAM Cell 6
Chapter 3 Resistive Open and Stuck-on Defect in SRAM Cells 7
3.1 Defect Candidates Investigation 7
3.2 Analysis of Resistive Open Defect in the Cell 10
3.3 Related Existing Fault Models 10
3.3.1 Analysis of Open Defect in Category-1 11
3.3.2 Analysis of Open Defect in Category-2 15
3.3.3 Analysis of Open Defect in Category-3 17
3.3.4 Analysis of Open Defect in Category-4 20
3.3.5 Summary of Open Defects 21
3.4 Analysis of Stuck-on Fin Defect in the Cell 22
3.4.1 Analysis of Stuck-on Defect in Category-1 23
3.4.2 Analysis of Stuck-on Defect in Category-2 26
3.4.3 Analysis of Stuck-on Defect in Category-3 27
3.4.4 Analysis of Stuck-on Defect in Category-4 30
3.4.5 Summary of Stuck-on Defects 32
3.5 Tolerance of Defect on Part of Fins 33
Chapter 4 Testing Strategy for Diagnosing Vague Open and Stuck-on Defects 34
4.1 The Concept for Testing Strategy 34
4.2 Proposed Write Conditions 36
Chapter 5 Experimental Results 40
5.1 Simulation Results of Category-1 in WCA 40
5.1.1 Missing Fin Defect Simulation 40
5.1.2 Stuck-on Fin Defect Simulation 42
5.2 Simulation Results of Category-1 in WCB 43
5.2.1 Missing Fin Defect Simulation 43
5.2.2 Stuck-on Fin Defect Simulation 45
5.3 Simulation Results of Category-2 in WCA 46
5.3.1 Missing Fin Defect Simulation 46
5.3.2 Stuck-on Fin Defect Simulation 47
5.4 Simulation Results of Category-2 in WCB 48
5.4.1 Missing Fin Defect Simulation 48
5.4.2 Stuck-on Fin Defect Simulation 49
5.5 Simulation Results of Category-3 in WCA 50
5.5.1 Missing Fin Defect Simulation 50
5.5.2 Stuck-on Fin Defect Simulation 50
5.6 Simulation Results of Category-3 in WCB 51
5.6.1 Missing Fin Defect Simulation 51
5.6.2 Stuck-on Fin Defect Simulation 52
5.7 Simulation Results of Category-4 in WCA 53
5.7.1 Missing Fin Defect Simulation 53
5.7.2 Stuck-on Fin Defect Simulation 54
5.8 Simulation Results of Category-4 in WCB 54
5.8.1 Missing Fin Defect Simulation 54
5.8.2 Stuck-on Fin Defect Simulation 56
5.9 Defect Dictionary Generation 57
5.9.1 Diagnostics of Class 3 60
5.9.2 Diagnostics of Class 4 and Class 5 62
Chapter 6 Conclusions and Future Works 64
References 65
[1] L. L. Chang , Y. K. Choi , D. W. Ha , P. Ranade , S. Y. Xiong , J. Bokor , C. M. Hu and T. J. King, “Extremely scaled silicon nano-CMOS devices,” Proc. of the IEEE, Vol. 91, No. 11, Nov. 2003, pp. 1860-1873.
[2] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Sunderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Sub-50-nm FinFET: PMOS,” in Tech. Dig. Int. Electron Devices Meeting (IEDM), Nov. 1999, pp. 67-70.
[3] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, J. Bokor, C. Hu, M.-R. Lin, and D. Kyser, “FinFET scaling to 10nm Gate Length,” in Tech. Dig. Int. Electron Devices Meeting (IEDM), Dec. 2002, pp. 251-254.
[4] E. J. Nowak , I. Aller , T. Ludwig , K. Kim , R. V. Joshi , C. T. Chuang , K. Bernstein and R. Puri, “Turning silicon on its edge double gate CMOS/FinFET technology,” IEEE Circuits Devices Mag., Vol. 20, No. 1, Feb. 2004, pp. 20-31.
[5] Y. Liu, Q. Xu. “On Modeling Faults in FinFET Logic Circuits,” in Proc. IEEE Int. Test Conference (ITC), Nov. 2012, pp. 1-9.
[6] E. Baravelli, A. Dixit, R. Rooyackers, M. Jurczak, N. Speciale and K. De Meyer , “Impact of line-edge roughness on FinFET matching performance,” IEEE Trans. Electron Devices, Vol. 54, No. 9, Sept. 2007, pp.2466 -2474.
[7] V. H. Champac and V. Avendano, “Test of data retention faults in CMOS SRAMs using special DFT circuitries,” IEEE Circuits Devices Syst., Vol. 151, No. 2, April 2004, pp.78 -82.
[8] S. Hamdioui and A. J. van de Goor, “An experimental analysis of spot defects in SRAMs: realistic fault models and tests,” in Proc. Ninth IEEE Asian Test Symp. (ATS), Dec. 2000, pp. 131-138.
[9] A. Meixner and J. Banik “Weak write test mode: An SRAM cell stability design for test technique,” in Proc. Int. Test Conf., Nov. 1997, pp.1043-1052.
[10] J. Yang, B. Wang, Y. Wu, and A. Ivanov, “Fast Detection of Data Retention Faults and Other SRAM Cell Open Defects,” in Proc. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Jan. 2006. pp. 167-180.
[11] S. A. Tawfik , Z. Liu and V. Kursun, “Independent-gate and tied-gate FinFET SRAM circuits: Design guidelines for reduced area and enhanced stability,” in Proc. Int. Conf. Microelectron. (ICM), Dec. 2007, pp.171-174.
[12] Z. Liu, S. A. Tawfik, and V. Kursun, “An Independent-Gate FinFET SRAM Cell for High Data Stability and Enhanced Integration Density,” in Proc. IEEE International Systems on Chip (SOC) Conference, Sept. 2007, pp. 63-66.
[13] [Online]. Available: ptm.asu.edu
[14] A.J. van de Goor, “Testing Semiconductor Memories, Theory and Practice,” COMTEX Publishing, Gouda, The Netherlands, 1998.
[15] E. Seevinck, F. J. List and J. Lohstroh, “Static-Noise Margin Analysis of MOS SRAM Cells,” IEEE Journal of Solid-State Circuits, Vol. SC-22, No. 5, Oct. 1987, pp. 748-754.
[16] A. Bansal , S. Mukhopadhyay and K. Roy, “Device-optimization technique for robust and low-power FinFET SRAM design in nanoscale era”, IEEE Trans. Electron Devices, Vol. 54, No. 6, June 2007, pp.1409-1419.
[17] Chih-Wea Wang, “FAME: An Advanced Memory Failure Analysis Framework”, National Tsing Hua University, 2003.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *