帳號:guest(3.145.95.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐浩哲
作者(外文):Hsu, Hao Che
論文名稱(中文):一使用耦合電感電容震盪器的數位對時間轉換器
論文名稱(外文):A Digital to Time Converter using Coupled LC Oscillators
指導教授(中文):謝秉璇
指導教授(外文):Hsieh, Ping Hsuan
口試委員(中文):楊家驤
劉怡君
黃柏鈞
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061579
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:63
中文關鍵詞:數位對時間轉換器四相位壓控震盪器電感電容震盪器相位內插器低相位雜訊
外文關鍵詞:DTCQVCOcoupled LC oscillatorphase interpolatorlow phase noise
相關次數:
  • 推薦推薦:0
  • 點閱點閱:255
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
數位對時間轉換器被廣泛的運用在包含雷達系統和資訊傳輸系統的許多系統中來調整精準的時間延遲,此研究提出一個使用耦合電感電容震盪器的數位對時間轉換器,此架構是發想自傳統四相位電感電容震盪器,傳統架構為完全對稱且產生精準的四相位輸出訊號作為I/Q通道,提出的架構為刻意地去控制電路的不對稱性來調整輸出訊號的相位,設計了正弦內插法的內插器於耦合電路之中,每個內插器可調整90度的相位,且在調整過程中維持耦合的強度以降低電路的相位雜訊。
此篇研究使用了台積電90奈米的CMOS製程製作晶片,根據量測結果,本電路操作在7G赫茲的頻率下將週期切成8個bits的調整,微分非線性誤差小於1.71LSBs,等同於時間間格小於1.5p秒,能量消耗為16.84m瓦。
Digital-to-time converters (DTCs) have been widely used in many applications, including radar and data communication systems [1–4], for accurate timing adjustment. This work presents a digital-to-time converter using coupled LC oscillators. Originating from quadrature LC oscillators [5–11] where the architecture symmetry is carefully maintained to generate accurate I and Q signals, the proposed design varies the output phase by intentionally adjusting the relative strengths of the coupling circuits. Sinusoidal interpolation employed in the coupling circuits achieves 90 of phase adjustment with a single interpolator in each coupling circuit. Furthermore, the coupling strengths are carefully adjusted so as to maintain a low phase noise performance across all phase settings [7].
This work is designed and implemented with 90-nm CMOS technology. Measurement results show that, with the core oscillators operating at 7GHz and 8 bits of phase adjustment across the entire oscillation cycle, differential nonlinearity (DNL) of less than 1.71 LSBs, which is equivalent to timing adjustment step of no more than 1.5ps, is achieved. The total power consumption is 16.84mW.
Contents iv
List of Tables vi
List of Figures vii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 LC Oscillators 6
2.1 LC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 LC tank equivalent circuits . . . . . . . . . . . . . . . . . 7
2.1.2 Impedance of LC tank . . . . . . . . . . . . . . . . . . . 8
2.1.3 Time domain analysis of LC tank . . . . . . . . . . . . . 10
2.1.4 Oscillation condition . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Noise in LC oscillators . . . . . . . . . . . . . . . . . . . . 15
2.1.6 Operation mode of LC oscillators . . . . . . . . . . . . 18
2.2 Topologies of LC oscillators . . . . . . . . . . . . . . . . . . . . 21
2.3 Quadrature LC oscillators . . . . . . . . . . . . . . . . . . . . . . 24
3 Proposed Circuit Implementation 27
3.1 Core Oscillators Implementation . . . . . . . . . . . . . . . . . . 30
iv
3.2 Coupling Circuits Implementation . . . . . . . . . . . . . . . . 34
3.3 Measurement Considerations . . . . . . . . . . . . . . . . . . . 40
4 Simulation result 44
4.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Post-layout simulation . . . . . . . . . . . . . . . . . . . . . . . . 46
5 Measurement Results 50
5.1 PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Test Chip Photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Performance Measurement . . . . . . . . . . . . . . . . . . . . . 53
5.4 Performance summary . . . . . . . . . . . . . . . . . . . . . . . . 58
6 Conclusion 60
Bibliography 61
[1] C.-M. Lai, K.-W. Tan, L.-Y. Yu, Y.-J. Chen, J.-W. Huang, S.-C. Lai, F.-H. Chung, C.-F. Yen, J.-M. Wu, P.-C. Huang, K.-J. Chang, S.-Y. Huang, and T.-S. Chu, “A uwb ir timed-array radar using time-shifted directsampling
architecture,” in VLSI Circuits (VLSIC), 2012 Symposium on, June 2012, pp. 54–55.
[2] C.-M. Lai, J.-M. Wu, P.-C. Huang, and T.-S. Chu, “A scalable directsampling broadband radar receiver supporting simultaneous digital multibeam array in 65nm cmos,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, Feb 2013, pp. 242–243.
[3] Y.-H. Kao, C.-M. Lai, J.-M. Wu, P.-C. Huang, P.-H. Hsieh, and T.-S. Chu, “28.3 a frequency-defined vernier digital-to-time converter for impulse radar systems in 65nm cmos,” in Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014 IEEE International, Feb 2014, pp. 474–475.
[4] P. Francese, T. ToifI, P. Buchmann, M. Brandli, C. Menolfi, M. Kossel, T. Morf, L. Kull, and T. Andersen, “A 16 gb/s 3.7 mw/gb/s 8-tap dfe receiver and baud-rate cdr with 31 kppm tracking bandwidth,” IEEE Journal of Solid-State Circuits, vol. 49, no. 11, pp. 2490–2502, Nov 2014.
[5] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 mhz cmos lc-oscillator with quadrature outputs,” in Solid-State Circuits Conference, 61 1996. Digest of Technical Papers. 42nd ISSCC., 1996 IEEE International, Feb 1996, pp. 392–393.
[6] P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and design of a 1.8-ghz cmos lc quadrature vco,” IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1737–1747, Dec 2002.
[7] J. van der Tang, P. van de Ven, D. Kasperkovitz, and A. van Roermund, “Analysis and design of an optimally coupled 5-ghz quadrature lc oscillator,” IEEE Journal of Solid-State Circuits, vol. 37, no. 5, pp. 657–661, May
2002.
[8] H.-R. Kim, C.-Y. Cha, S.-M. Oh, M.-S. Yang, and S.-G. Lee, “A very lowpower quadrature vco with back-gate coupling,” IEEE Journal of Solid-State Circuits, vol. 39, no. 6, pp. 952–955, June 2004.
[9] A. Mirzaei, M. Heidari, R. Bagheri, S. Chehrazi, and A. Abidi, “The quadrature lc oscillator: A complete portrait based on injection locking,”IEEE Journal of Solid-State Circuits, vol. 42, no. 9, pp. 1916–1932, Sept 2007.
[10] G. Cusmai, M. Repossi, G. Albasini, A. Mazzanti, and F. Svelto, “A magnetically tuned quadrature oscillator,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2870–2877, Dec 2007.
[11] I. Chamas and S. Raman, “Analysis and design of a cmos phase-tunable injection-coupled lc quadrature vco (ptic-qvco),” IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp. 784–796, March 2009.
[12] A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb 1998.
[13] ——, “Design issues in cmos differential lc oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[14] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, no. 2, pp. 329–330, Feb 1966.
[15] A. Mazzanti, F. Svelto, and P. Andreani, “On the amplitude and phase errors of quadrature lc-tank cmos oscillators,” IEEE Journal of Solid-State Circuits, vol. 41, no. 6, pp. 1305–1313, June 2006.
[16] L.-S. Lai, H.-H. Hsieh, and L.-H. Lu, “An image-band-rejection technique for error detection of on-chip quadrature phases,” Microwave Theory and Techniques, IEEE Transactions on, vol. 56, no. 10, pp. 2173–2179, Oct 2008.
[17] N. Lanka, S. Patnaik, and R. Harjani, “Frequencyhopped quadrature frequency synthesizer in 0.13-mmtechnology,00 IEEE Journal of Solid-State Circuits, vol. 46, no. 9, pp.2021􀀀-2032, Sept2011.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *