帳號:guest(3.15.192.196)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃莉悅
作者(外文):Huang, Li-Yue
論文名稱(中文):應用於低功耗大數據處理之過濾式搜尋引擎-可快速開機常關型之非揮發性三元內容循址記憶體
論文名稱(外文):A Normally-off Instant-on Stress-relieved Nonvolatile TCAM for Filter-based Search Engines Used in Energy-Efficient Big-Data Processing
指導教授(中文):張孟凡
指導教授(外文):Chang, Meng-Fan
口試委員(中文):洪浩喬
邱瀝毅
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061575
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:53
中文關鍵詞:大數據處理非揮發性記憶體三元內容循址記憶體
外文關鍵詞:Big data processingNVMTCAM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:667
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
隨著嵌入式系統與網路的快速發展,世界各處無時無刻產生大量資料,新興電子應用(如:智慧型手機、平板、無線感測網絡、辨識系統以及物聯網等)有著需處理大量資料、待機時間長之特性,並有低耗能的需求;我們認為當未來大數據時代中,雲端運算進行多筆資料傳輸、複雜運算耗能之大,若增加一過濾器如:三元內容循址記憶體於各種平台介面間,可先將接收到的資料進行快速比對過濾,就能大幅減少高耗能後傳處理的資料量,達到省能效用.
  然而此過濾器需適應這些新興應用的特色-1.容量需求大 2.待機時間長;傳統靜態隨機存取器為基底的三元內容循址記憶體需要兩組靜態隨機存取器儲存三種資料、為16顆電晶體組成的記憶胞,使得系統面積有限的情況下容量小;此外因製程微縮靜態隨機存取器之待機漏電耗能的頭疼問題,一般解決方法為將資料搬動到另外一塊非揮發性記憶體內,然而這個作法不但開關機需搬動資料耗能大,且受限於傳輸介面的輸入輸出端數、導致開關機資料搬動時間隨容量而增加。
  論文欲結合新興非揮發性記憶體進行改良,電阻式記憶體為相當具有潛力的非揮發記憶元件,特色為高密度、高低阻態比值大、可快速隨機存取且不會有長時間儲存後阻值漂移的問題,然而若為了較快讀取速度或較大感測邊界而施加較大讀取電壓,使電阻式記憶體長時間兩端跨壓大,則可能造成阻值漂移,嚴重時會造成讀取錯誤.稱之為讀取干擾;因此做高速電路設計須考慮讀取干擾造成的資料可靠度問題.
  論文提出一電阻電容過濾式降壓4T2R非揮發性三元內容循址記憶體,達到:
1. 降低配對限於配對情況的漏電電流.
2. 降低配對線負載
3. 創新的電阻電容延遲搜尋方式,可使搜尋時電阻式記憶體的讀取壓力(流經電阻式記憶體的電流對時間積分)比起目前國際論文已發表之架構小約6倍,緩和讀取壓力與搜尋速度之間的取捨。
4. 提升4倍的品質因素:速度乘以可支援最常配對線長度乘以容量.
  於0.18微米邏輯製程下、4千位元的非揮發性三元內容循址記憶體實體晶片達到搜尋時間為1.2奈秒。
  With the rapid growth of the internet and embedded systems, large amounts of data are created everywhere in the world simultaneously. Emerging Electronic Applications (ex. Smart Phones, PADs, wireless sensing networks, recognition systems and Internet of things) have characteristics including large amounts of data waiting to be processed, long standby time, and need for low energy. We believe that in the era of big data, energy caused by the large amount of data transfers and complex computations Cloud computing generates could be greatly reduced by introducing a filter like Ternary Content Addressable Memory (TCAM) between different platforms. This kind of memory can compare and filter incoming data, thus reducing the amount of data sent to following stages and save power.
  However, this kind of filter needs to fulfill the needs of these emerging applications - 1.Large Capacity, 2.long standby time. Traditional Static Random Access Memory (SRAM)-based TCAM needs two pairs of SRAM cells to save 3 states of data (0, 1 and don’t care). Under the same area constraint, SRAM-based TCAM (16T) has a small capacity; In addition, with process scaling down the leakage problem caused by SRAM also appears in TCAM. Conventional solution moves the stored data to another nonvolatile memory macro (NVM macro), but this method not only requires large energy for moving data, but is also a slow process limited by the I/O number of the interface.
  This study plans to improve current solutions by combining emerging NVM with CMOS process in cell level. Resistive Random Access Memory (ReRAM ) is a very promising nonvolatile memory, with high density, distinctive states ( high R-Ratio) , fast random access, and good data retention time. However, a large voltage may be placed across the ReRAM for fast access, which may cause the ReRAM resistance to drift, and could lead to read failure under serious conditions. This situation (Read Disturb) must be put into consideration when designing high-speed ReRAM circuits.
  This study proposes an RC-filtered stress-decoupled (RCSD) 4T2R nonvolatile TCAM (nvTCAM) to 1) suppress match-line (ML) leakage current from match cells (IML-M), 2) reduce ML parasitic load (CML), 3) decouple NVM-stress from wordlength (WDL) and IML-MIS. RCSD reduces NVM-stress by 6x, and achieves a 4+x improvement in speed-WDL-capacity-product. A 128x32b RCSD nvTCAM macro was fabricated using HfO ReRAM and an 180nm CMOS. This paper presents the first ReRAM-based nvTCAM featuring the shortest (1.2ns) search delay (TSD) among nvTCAMs with WDL≧32bits.
摘要 I
ABSTRACT II
圖片清單 VI
表格清單 VIII
專有名詞中英對照 IX
CHAPTER 1. 介紹 1
1.1 應用背景 1
1.1.1 行動裝置防毒 2
1.1.2 環境感測 2
1.1.3 追蹤系統 3
1.1.4 穿戴式遠端智慧照護 3
1.2 動機 4
1.3 過濾式搜尋引擎 6
1.3.1 傳統三元內容循址記憶體 7
1.3.2 兩巨集之非揮發性三元內容循址記憶體 9
1.3.3 單巨集之非揮發性三元內容循址記憶體 10
CHAPTER 2. 單巨集非揮發性過濾器 12
2.1 新興非揮發性記憶元件 12
2.2 電阻式記憶體 14
2.2.1 架構與轉換機制 14
2.2.2 讀取干擾與耐久度議題 15
2.3 傳統揮發性過濾器之搜尋操作 16
2.4 單巨集非揮發性過濾器之設計挑戰 18
2.5 國際已發表之作品 19
2.5.1 二極管連接電晶體之4T2R[34] (D4T2R) 20
2.5.2 雙位元編碼之2T2R[35] 21
CHAPTER 3. 提出的架構與操作方式 23
3.1 電阻電容延遲過濾式降壓記憶胞 23
3.2 電阻電容延遲搜尋機制 23
3.2.1 動態電源線脈衝 27
3.2.2 資料線脈衝 28
3.3 寫入機制 30
CHAPTER 4. 分析與比較 31
4.1 速度分析 31
4.1.1 配對線負載分析 32
4.1.2 放電與漏電分析 32
4.2 讀取壓力分析 34
4.3 容忍變異能力 34
4.3.1 可支援之最小高低阻態比 35
4.3.2 電晶體與脈衝變異 35
4.4 與過去作品的比較 39
CHAPTER 5. 實體晶片 41
5.1 記憶胞佈局 41
5.2 RCSD非揮發性三元內容循址記憶體巨集 42
5.2.1 巨集架構 42
5.2.2 自我時間感測機制 44
5.3 測試晶片量測方式 44
CHAPTER 6. 量測結果與結論 46
6.1 量測結果 46
6.2 結論與未來展望 48
REFERENCES 51
[1] eLANS, Michigan university. Projects- wireless sensor networks. Available at: http://www.cse.msu.edu/rgroups/elans/project_files/wsn_project1.html
[2] 行政院農業委員會.2012.WSN遠距即時監測 防患未然.網址:http://theme.coa.gov.tw/suggest.php?issue=2446238&id=2446242
[3] 科學發展.2010.東方果實蠅的監測.網址:http://www.taiwan921.lib.ntu.edu.tw/mypdf/mypaper-09.pdf
[4] University of Missouri-rolla. 2005. Medical Applications of Wireless Technology. Available at: http://web.mst.edu/~mobildat/MedApplicationsWireless/index.html
[5] Harvard sensor network lab, Harvard College. 2008. CodeBlue: Wireless Sensors for Medical Care. Available at: http://fiji.eecs.harvard.edu/CodeBlue
[6] Mark P Mills, Digital Power Group. 2013. The Cloud Beings With Coal. Available at: http://www.tech-pundit.com/wp-content/uploads/2013/07/Cloud_Begins_With_Coal.pdf?c761ac&3c5e83
[7] Burr, G.W., et al., “Phase change memory technology,” Journal of Vacuum Science & Technology B, Volume:28, Issue: 2, pp. 223−262, 2010.
[8] G. De Sandre, et al., "A 90nm4Mb embedded phase-change memory with 1.2V 12ns read access time and 1MB/s write throughput," IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 268-269, Feb. 2010.
[9] T. Morikawa, et al., "A low power phase change memory using low thermal conductive doped-Ge2Sb2Te 5 with nano-crystalline structure," IEEE International Electron Devices Meeting (IEDM), pp. 3141-3144, Dec. 2012.
[10] H. Y. Cheng , et al., "A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change 58 material," IEEE International Electron Devices Meeting (IEDM), pp. 341-344, Dec. 2011.
[11] F. Bedeschi, et al., "A Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell Storage," IEEE Journal of Solid-State Circuits, vol. 44, pp. 217-227, Jan. 2009.
[12] J. Y. Wu, et al., "A low power phase change memory using thermally confined TaN/TiN bottom electrode," IEEE International Electron Devices Meeting (IEDM), pp. 321-324, Dec. 2011.
[13] Matsunaga, S., et al., “Design of a Low-Energy Nonvolatile Fully-Parallel Ternary CAM Using a Two-Level Segmented Match-Line Scheme,” IEEE International Symposium on Multiple-Valued Logic (ISMVL), pp. 99-104, May 2011.
[14] Ki-Chul Chun, et al., "A Scaling Roadmap and Performance Evaluation of In-Plane and Perpendicular MTJ Based STT-MRAMs for High-Density Cache Memory," IEEE Journal of Solid-State Circuits, vol. 48, pp. 598-610, Feb. 2013.
[15] R. Takemura, et al., "A 32-Mb SPRAM With 2T1R Memory Cell, Localized Bi-Directional Write Driver and `1'/`0' Dual-Array Equalized Reference Scheme," IEEE Journal of Solid-State Circuits, vol. 45, pp. 869-879, April 2010.
[16] D. Halupka, et al., "Negative-resistance read and write schemes for STT-MRAM in 0.13µm CMOS," IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 256-257, Feb. 2010.
[17] T. Kawahara et al., “2Mb Spin-Transfer Torque RAM (SPRAM) with Bit-by-Bit Bidirectional Current Write and Parallelizing-Direction Current Read,” IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 280−281, Feb. 2007,
[18] S.-S. Sheu, et al., “A 4Mb Embedded SLC Resistive-RAM Macro with 7.2ns Read-Write Random-Access Time and 160ns MLC-Access Capability,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 200−201, Feb. 2011.
[19] C. Cagli, et al., “Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction,” IEEE International Electron Devices Meeting (IEDM), pp. 1-4, 15-17 Dec. 2008.
[20] H. Y. Lee, et al., "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2based RRAM," IEEE International Electron Devices Meeting (IEDM), pp. 1-4, Dec. 2008.
[21] Y. S. Chen, et al., "Forming-free HfO2bipolar RRAM device with improved endurance and high speed operation," IEEE International Symposium on VLSI Technology, Systems, and Applications (VLSI-TSA), pp. 37-38, April 2009.
[22] Y. S. Chen, et al., "Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity," IEEE International Electron Devices Meeting (IEDM), pp. 1-4, Dec. 2009.
[23] B. Gao, et al., "Oxide-based RRAM switching mechanism: A new ion-transport-recombination model," IEEE International Electron Devices Meeting (IEDM), pp. 1-4, 2008.
[24] B. Gao, et al., " Oxide-based RRAM: Unified microscopic principle for both unipolar and bipolar switching,” IEEE International Electron Devices Meeting (IEDM), pp. 1741-1744, 2011.
[25] U. Russo, et al., “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices,” IEEE Transactions on Electron Devices (IEDM), pp. 193-200, Feb. 2009
[26] S.-S. Sheu, et al., "A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme," IEEE International Symposium on VLSI Circuits, pp. 82-83,June 2009.
[27] Y. H. Tseng, et al., "High density and ultra small cell size of Contact ReRAM (CR-RAM) in 90nm CMOS logic technology and circuits," IEEE International Electron Devices Meeting (IEDM), pp. 1-4, Dec. 2009.
[28] C. H. Cheng, et al., "Novel Ultra-low power RRAM with good endurance and retention," IEEE International Symposium on VLSI Technology, pp. 85-86, June 2010.
[29] H.-Y. Lee, et al., “Comprehensively study of read disturb immunity and optimal read scheme for high speed HfOx based RRAM with a Ti layer,” IEEE International Symposium on VLSI Technology Systems and Applications (VLSI-TSA), pp. 132-133, April 2010
[30] Wei Xu, et al., “Design of Spin-Torque Transfer Magnetoresistive RAM and CAM/TCAM with High Sensing and Search Speed,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 66-74, Jan. 2010.
[31] Eshraghian, K., et al., “Memristor MOS Content Addressable Memory (MCAM): Hybrid Architecture for Future High Performance Search Engines,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 1407-1417, Aug. 2011.
[32] Matsunaga, S., et al., “Fully Parallel 6T-2MTJ Nonvolatile TCAM with Single-Transistor-Based Self Match-Line Discharge Control,” Symposium on VLSI Circuits (VLSIC), pp. 298-299, June 2011.
[33] Matsunaga, S., et al., “Implementation of a perpendicular MTJ-based read-disturb-tolerant 2T-2R nonvolatile TCAM based on a reversed current reading scheme,” Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 475-476, Feb. 2012.
[34] Matsunaga, S., et al., “A 3.14 um2 4T-2MTJ-cell fully parallel TCAM based on nonvolatile logic-in-memory architecture,” Symposium on VLSI Circuits (VLSIC), pp. 44-45, June 2012.
[35] Jing Li, et al., “1Mb 0.41 µm2 2T-2R cell nonvolatile TCAM with two-bit encoding and clocked self-referenced sensing,” Symposium on VLSI Circuits (VLSIC), pp. 104-105, June 2013.
[36] P. Muthu Kumaran, et al., “An Efficient and Systematic Virus Detection Processor for Embedded Network Security,” International Journal of Computer & Communication Technology ISSN (PRINT): 0975-7449, Vol. 4, Issue 1, 2013.
[37] J.-S. Wang, et al., “TCAM for IP-Address Lookup Using Tree-style AND-type Match Lines and Segmented Search Lines,” . IEEE International Solid-State Circuits Conference (ISSCC), Dig. of Tech. Papers, pp. 577-586, Feb. 2006.
[38] J. Tsouhlarakis et al., “A flash memory technology with quasi-virtual ground array for low-cost embedded applications,” IEEE J. Solid-State Circuits, pp. 969–978, Jun. 2001.
[39] M.-F. Chang et al., “A process variation tolerant embedded split-gate Flash memory using pre-stable current sensing scheme,” IEEE J. of Solid-State Circuits, pp.987-994, March 2009.
[40] Matsunaga, S., et al., “Standby-Power-Free Compact Ternary Content-Addressable Memory Cell Chip Using Magnetic Tunnel Junction Devices,” Applied Physics Express (JSAP), Volume 2, Number 2, 023004, 2009.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *