帳號:guest(3.147.57.197)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李志鴻
作者(外文):Li, Chih Hong
論文名稱(中文):適用於電子鼻系統電容式氣體感測器之低功耗電容數位轉換器
論文名稱(外文):A Low Power Capacitance-to-Digital Converter of Capacitive Type Gas Sensors for an Electronic Nose System
指導教授(中文):鄭桂忠
指導教授(外文):Tang, Kea Tiong
口試委員(中文):陳新
謝志成
口試委員(外文):Chen, Hsin
Hsieh, Chih Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061573
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:74
中文關鍵詞:電子鼻氣體感測器電容數位轉換器
外文關鍵詞:Electronic noseGas sensorCapacitance-to-digital converter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:660
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
模仿動物的生物機制一直是人類的靈感,而人類自身便擁有最複雜也最適合人類的機制。人類無法聞有毒或其他危險性的氣體,且人類彼此間對嗅覺的感覺因人而異,無一定的標準。相較於傳統的大型氣體檢測儀器,電子鼻系統的體積小、成本低、功耗消耗低、可將嗅覺量化而定出標準並可長時間暴露在危險氣體,因此被廣泛應用在食品品質監控、環境監測、污染測量和疾病診斷等等。電子鼻系統是由氣體感測器陣列、信號擷取電路和資料識別系統所組成。氣體感測器有許多種類,本研究選擇使用化學式電容式感測器中的導電聚合物氣體感測器 (Conducting Polymer Gas Sensor, CP),其感測機制為電容值隨氣體反應變化。此種感測器之靈敏度高、反應機制簡單,並且在室溫可以正常操作,因此適用於可攜式裝置。然而,此種感測器的電阻值容易受到溫度、濕度與背景氣味而改變,且在感測器陣列中,每個感測器會塗佈不同感測材料而有不同的電容值。因此,本論文提出的應用於電容式氣體感測器之電容數位轉換器,以交換電容放大器選用電容電壓組合來選擇電容區間的方法,增大了量測範圍以配合不同感測器的電容值大小,並將感測器化學訊號轉換為電訊號,最後以連續漸近式類比數位轉換器將電訊號轉為數位訊號以利後端計算機分析。本研究經由 TSMC 0.18 μm 1P6M 製程實作了操作在 0.7 V、量測時間 0.25 ms 的電容數位轉換器,其有效位元數為 8.35 bits,計算所得 FoM 為 168 fJ/Step
Imitating biomechanism of animals makes people to improve the world. The biomechanism of human is the most complexity but the most suitable for ourselves. Many odors are not safe for human to smell, such as poisonous and exhausted gases. In addition, olfaction is different from one person to others. Compare to the traditional gas detection instrument, an electronic nose (E-nose) system has various advantages including small chip size, low cost, low power dissipation, quantization of olfaction, and the capability of being exposed to dangerous gases. Therefore, it can be applied to quality control of foods, environmental monitoring, pollution measurement and disease diagnosis, etc. E-nose system is composed of a gas sensor array, a signal acquisition circuit and a pattern recognition system. Conducting polymer sensor is one of the chemical gas sensors. It has the advantages of working at room temperature, high sensitivity, and its mechanism is simple, which would be suitable for portable devices. However, the sensor capacitance could be easily affected by temperature, humidity, and background odors. In addition, the capacitance of each sensor in the sensor array are not the same after deposition of different sensing materials. Therefore, an capacitance-to-digital converter with switched-capacitor amplifier and successive approximation register analog-to-digital converter is presented in this article. Switched-capacitor convert the capacitance to voltage and changing the capacitance measurement range by selecting 4 set of reference capacitors and voltages. And analog-to-digital converter transfer the voltage to digital output for computer analysis. The prototype is implemented with TSMC 0.18 μm 1P6M process. The prototype operated at 0.7 V and measurement time is 0.25 ms. The effective number of bits are 8.35 bits, and the figure of merit is 168 fJ/step.
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ABSTRACT. . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
第 1 章 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機與目標. . . . . . . . . . . . . . . . . . . . . . . 3
1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . 4
第 2 章 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 電子鼻簡介. . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 氣體感測器種類介紹. . . . . . . . . . . . . . . . . . . . . 7
2.2.1 金屬氧化物感測器 (Metal Oxide Semiconductor Sensors, MOX) 7
2.2.2 導電聚合物感測器 (Conducting Polymer sensors, CPs). . . . 9
2.2.3 金氧半場效電晶體 (Metal Oxide Field Transistors, MOSFET) 10
2.2.4 石英水晶微量天平 (Quartz-Crystal Microbalance, QCM). . . 10
2.2.5 表面聲波 (Surface Acoustic Wave, SAW). . . . . . . . . . 11
2.2.6 光感測器 (Fluorescent Odor Sensors). . . . . . . . . . . 12
2.3 電容式聚合物氣體感測器 . . . . . . . . . . . . . . . . . . 14
2.4 電容式感測器介面電路 . . . . . . . . . . . . . . . . . . . 16
2.4.1 交換式電容放大器 (Switched-Capacitor Amplifier) . . . . . 16
2.4.2 電容電流轉換電路 . . . . . . . . . . . . . . . . . . . . 21
2.4.3 全數位鎖相迴路 (A Fully-Digital Phase Locked Loops). . . 24
2.5 預計電路規格與文獻比較 . . . . . . . . . . . . . . . . . . 25
第 3 章 電容式氣體感測器之界面電路設計與模擬 . . . . . . . . . 27
3.1 電容數位轉換器系統操作流程 . . . . . . . . . . . . . . . . 28
3.2 電容電壓轉換器架構設計與模擬 . . . . . . . . . . . . . . . 32
3.2.1 交換式電容放大器架構 . . . . . . . . . . . . . . . . . . 32
3.2.2 交換式電容放大器模擬 . . . . . . . . . . . . . . . . . . 36
3.3 類比數位轉換器電路架構設計與模擬 . . . . . . . . . . . . . 40
3.3.1 連續漸近式類比數位轉換器架構 . . . . . . . . . . . . . . 40
3.3.2 數位類比轉換器 (Digital-Analog Converter, DAC) . . . . . 42
3.3.3 比較器架構 . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.4 非同步式控制電路 . . . . . . . . . . . . . . . . . . . . 48
3.3.5 電容陣列切換控制電路 . . . . . . . . . . . . . . . . . . 49
3.3.6 連續漸近式類比數位轉換器模擬 . . . . . . . . . . . . . . 50
3.4 電容數位轉換器模擬與佈局 . . . . . . . . . . . . . . . . . 52
第 4 章 電容氣體感測器之界面電路量測結果 . . . . . . . . . . . 56
4.1 量測環境規劃 . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 類比數位轉換器量測 . . . . . . . . . . . . . . . . . . . . 56
4.2.1 量測結果 . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 量測討論 . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 電容數位轉換器量測 . . . . . . . . . . . . . . . . . . . . 61
4.3.1 量測結果 . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 量測結果討論 . . . . . . . . . . . . . . . . . . . . . . 63
第 5 章 結論 . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1 總結 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 未來發展 . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.1 雙端輸出交換式電容放大器架構 . . . . . . . . . . . . . . 65
5.2.2 電容陣列 . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.3 類比數位轉換器切換方式 . . . . . . . . . . . . . . . . . 67
5.2.4 積體化電容式氣體感測器 . . . . . . . . . . . . . . . . . 67
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
[1] L. Buck and R. Axel, “A Novel Multigene Family May Encode Odorant Receptors: A Molecular Basis for Odor Recognition,” Cell, vol. 65, pp. 175–187, Apr. 1991.
[2] Cyranose Electronic Nose. [Online]. Available: http://www.sensigent.com/products/cyranose.html (accessed 29 May, 2015).
[3] G. Korotcenkov, Chemical Sensors: Comprehensive Sensor Technologies, Vol 6, Chemical Sensors Applications. New York: Momentum Press, Jun. 2011.
[4] GCMS-TQ8040 Gas Chromatograph Mass Spectrometer. [Online]. Available: http://www.shimadzu.com/an/gcms/8040/8040_index.html (accessed 29 May, 2015).
[5] B. Tudu, A. Metla, B. Das, N. Bhattacharyya, A. Jana, D. Ghosh, and R. Bandyopadhyay, “Towards Versatile Electronic Nose Pattern Classifier for Black Tea Quality Evaluation: An Incremental Fuzzy Approach,” IEEE Trans. Instrum. Meas., vol. 58, no. 9, pp. 3069–3078, Sep. 2009.
[6] I. Concina, M. Falasconi, and V. Sberveglieri, “Electronic Noses as Flexible Tools to Assess Food Quality and Safety: Should We Trust Them?” IEEE Sensors J., vol. 12, no. 11, pp. 3232–3237, Nov. 2012.
[7] C. Arnold, M. Harms, and J. Goschnick, “Air Quality Monitoring and Fire Detection with the Karlsruhe Electronic Micronose KAMINA,” IEEE Sensors J., vol. 2, no. 3, pp. 179–188, Jun. 2002.
[8] D.-J. Yao, “A Gas Sensing System for Indoor Air Quality Control and Polluted Environmental Monitoring,” in Proc. IEEE Conf. Nanotechnol., Jul. 2009, pp. 806–811.
[9] M. A. Ryan, K. S. Manatt, S. Gluck, A. V. Shevade, A. K. Kisor, H. Zhou, L. M. Lara, and M. L. Homer, “The JPL Electronic Nose: Monitoring Air in the U.S. Lab on the International Space Station,” in Proc. IEEE Conf. Sensors, Nov. 2010, pp. 1242–1247.
[10] K. I. Arshak, C. Cunniffe, E. G. Moore, and L. M. Cavanagh, “Custom Electronic Nose with Potential Homeland Security Applications,” in Proc. IEEE Sensors Applicat. Symp., 2006, pp. 30–35.
[11] D. Guo, D. Zhang, N. Li, D. Zhang, and J. Yang, “A Novel Breath Analysis System Based on Electronic Olfaction,” IEEE Trans. Biomed. Eng., vol. 57, no. 11, pp. 2753–2763, Nov. 2010.
[12] A. D’Amico, C. D. Natale, R. Paolesse, A. Macagnano, E. Martinelli, G. Pennazza, M. Santonico, M. Bernabei, C. Roscioni, G. Galluccio, R. Bono, E. F. Agrò, and S. Rullo, “Olfactory Systems for Medical Applications,” Sensors and Actuators B: Chemical, vol. 130, no. 1, pp. 458 – 465, 2008.
[13] A. H. Abdullah, A. H. Adom, A. Y. M. Shakaff, M. N. Ahmad, A. Zakaria, F. S. A. Saad, C. M. N. C. Isa, M. J. Masnan, and L. M. Kamarudin, “Hand-Held Electronic Nose Sensor Selection System for Basal Stamp Rot (BSR) Disease Detection,” in Proc. Int. Conf. Intell. Syst. Modelling and Simulation (ISMS), Feb. 2012, pp. 737–742.
[14] JPL Electronic Nose. [Online]. Available: http://enose.jpl.nasa.gov (accessed 29 May, 2015).
[15] J. B. Chang and V. Subramanian, “Electronic Noses Sniff Success,” IEEE Spectrum, vol. 45, no. 3, pp. 50–56, Mar. 2008.
[16] K.-T. Tang, S.-W. Chiu, M.-F. Chang, C.-C. Hsieh, and J.-M. Shyu, “A Wearable Electronic Nose SoC for Healthier Living,” in IEEE Biomedical Circuits and Systems Conference (BioCAS), Nov. 2011, pp. 293–296.
[17] K.-T. Tang, S.-W. Chiu, C.-H. Shih, C.-L. Chang, C.-M. Yang, D.-J. Yao, J.-H. Wang, C.-M. Huang, H. Chen, K.-H. Chang, C.-C. Hsieh, T.-H. Chang, M.-F. Chang, C.-M. Wang, Y.-W. Liu, T.-J. Chen, C.-H. Yang, H. Chiueh, and J.-M. Shyu, “A 0.5V 1.27mW Nose-on-a-Chip for Rapid Diagnosis of Ventilator-Associated Pneumonia,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 420–421.
[18] R. W. Moncrieff, “An Instrument for Measuring and Classifying Odours,” Journal of Applied Physiology, vol. 16, no. 4, pp. 742–749, Jul. 1961.
[19] K. Persaud and G. Dodd, “Analysis of Discrimination Mechanisms in the Mammalian Olfactory System Using a Model Nose,” Nature, vol. 299, pp. 352–355, Sep. 1982.
[20] J. R. Stetter and W. R. Penrose. (2001, Aug.) THE ELECTROCHEMICAL NOSE. [Online]. Available: http://knowledge.electrochem.org/encycl/art-n01-nose.htm (accessed 29 May, 2015).
[21] J. R. Stetter, S. Zaromb, and M. W. F. Jr., “Monitoring of Electrochemically Inactive Compounds by Amperometric Gas Sensors,” Sensors and Actuators, vol. 6, no. 4, pp. 269–288, 1984.
[22] J. W. Gardner, “Pattern Recognition in the Warwick Electronic Nose,” in Proc. Int. Congress of European Chemoreception Research Organisation, University of Warwick, UK, Jul. 1988.
[23] J. W. Gardner and P. N. Bartlett, Sensors and Sensory Systems for an Electronic Nose. Germany: Springer Netherlands, Apr. 1992.
[24] J. W. Gardner and P. N. Bartlett, “A Brief History of Electronic Noses,” Sensors and Actuators B: Chemical, vol. 18, no. 1-3, pp. 210 – 211, 1994.
[25] S. Thuret, L. D. F. Moon, and F. H. Gage, “Therapeutic Interventions after Spinal Cord Injury,” Nat. Rev. Neurosci., vol. 7, no. 8, pp. 628–643, Aug. 2006.
[26] N. Barsan, D. Koziej, and U. Weimar, “Metal oxide-based gas sensor research: How to?” Sensors and Actuators B: Chemical, vol. 121, no. 1, pp. 18–35, Jan. 2007.
[27] B. Guo, A. Bermak, P. C. Chan, and G.-Z. Yan, “Characterization of Integrated Tin Oxide Gas Sensors With Metal Additives and Ion Implantations,” IEEE Sensors J., vol. 8, no. 8, pp. 1397–1398, Aug. 2008.
[28] B. Guo, A. Bermak, P. C. Chan, and G.-Z. Yan, “An Integrated Surface Micromachined Convex Microhotplate Structure for Tin Oxide Gas Sensor Array,” IEEE Sensors J., vol. 7, no. 12, pp. 1720–1726, Dec. 2007.
[29] R. Kumar, R. R. Das, V. N. Mishra, and R. Dwivedi, “A Neuro-Fuzzy Classifier-Cum-Quantifier for Analysis of Alcohols and Alcoholic Beverages Using Responses of Thick-Film Tin Oxide Gas Sensor Array,” IEEE Sensors J., vol. 10, no. 9, pp. 1461–1468, Sep. 2010.
[30] I. Kiselev, M. Sommer, J. K. Mann, and V. V. Sysoev, “Employment of Electric Potential to Build a Gas-Selective Response of Metal Oxide Gas Sensor Array,” IEEE Sensors J., vol. 10, no. 4, pp. 849–855, Apr. 2010.
[31] M. Aleixandre, J. Lozano, J. Gutiérrez, I. Sayago, M. Fernández, and M. Horrillo, “Portable E-Nose to Classify Different Kinds of Wine,” Sensors and Actuators B: Chemical, vol. 131, no. 1, pp. 71 – 76, Apr. 2008.
[32] T. C. Pearce, S. S. Schiffman, H. T. Nagle, and J. W. Gardner, Handbook of Machine Olfaction: Electronic Nose Technology. Wiley-VCH, Weinheim, Jan. 2006.
[33] Figaro. [Online]. Available: http://www.figarosensor.com/ (accessed 29 May, 2015).
[34] F. K. C. Harun, J. E. Taylor, J. A. Covington, and J. W. Gardner, “An Electronic Nose Employing Dual-Channel Odour Separation Columns with Large Chemosensor Arrays for Advanced Odour Discrimination,” Sensors and Actuators B: Chemical, vol. 141, no. 1, pp. 134 – 140, Aug. 2009.
[35] New Electronic Nose which can Smell Out Gases. [Online]. Available: http://www.sensorland.com/AppPage014.html (accessed 29 May, 2015).
[36] K. Arshak, E. Moore, G. M. Lyons, J. Harris, and S. Clifford, “A Review of Gas Sensors Employed in Electronic Nose Applications,” Sensor Review, vol. 24, no. 2, pp. 181–198, 2004.
[37] C.-Y. Wu, “An Integrated Conducting Polymer Gas Sensor Array and Its Adaptive Interface Circuit Compatible with Standard CMOS Processes for an Electronic Nose Chip,” Master’s thesis, National Tsing Hua University, 2010.
[38] M. J. Moure, P. Rodiz, M. D. Valdéz, L. Rodriguez-Pardo, and J. Fariña, “An FPGA-based system for the measurement of frequency noise and resolution of QCM sensors,” Latin American applied research, vol. 37, no. 1, pp. 25–30, 2007.
[39] M. F. Hribšek, V. Tošic Dejan, and R. Radosavljevic Miroslav, “Surface Acoustic Wave Sensors in Mechanical Engineering,” FME transactions, vol. 38, no. 1, pp. 11–18, 2010.
[40] C.-H. Li, “Interface Circuits for a Portable Electronic Nose Based on Surface Acoustic Wave Sensor Array,” Master’s thesis, National Tsing Hua University, 2010.
[41] X. Zhang, M. Liu, B. Wang, H. Chen, and Z. Wang, “A Wide Measurement Range and Fast Update Rate Integrated Interface for Capacitive Sensors Array,” IEEE Trans. Circuits and Syst. I: Reg. Papers, vol. 61, no. 1, pp. 2–11, Jan 2014.
[42] Z. Tan, S. H. Shalmany, G. C. M. Meijer, and M. A. Pertijs, “An Energy-Efficient 15-Bit Capacitive-Sensor Interface Based on Period Modulation,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1703–1711, July 2012.
[43] P. Bruschi, N. Nizza, and M. Dei, “A Low-Power Capacitance to Pulse Width Converter for MEMS Interfacing,” in European Solid-State Circuits Conf., Sept 2008, pp. 446–449.
[44] H. Danneels, K. Coddens, and G. Gielen, “A Fully-Digital, 0.3V, 270 nW Capacitive Sensor Interface without External References,” in European Solid-State Circuits Conf., Sept 2011, pp. 287–290.
[45] H. Ha, D. Sylvester, D. Blaauw, and J.-Y. Sim, “A 160nW 63.9fJ/Conversion-Step Capacitance-to-Digital Converter for Ultra-Low-Power Wireless Sensor Nodes,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb 2014, pp. 220–221.
[46] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 7th ed. Oxford University Press, Apr. 2014.
[47] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, April 2010.
[48] K. R. Laker and W. M. C. Sansen, Design of Analog Integrated Circuits and Systems. McGraw-Hill Companies, Jan. 1994.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *