|
[1] L. Buck and R. Axel, “A Novel Multigene Family May Encode Odorant Receptors: A Molecular Basis for Odor Recognition,” Cell, vol. 65, pp. 175–187, Apr. 1991. [2] Cyranose Electronic Nose. [Online]. Available: http://www.sensigent.com/products/cyranose.html (accessed 29 May, 2015). [3] G. Korotcenkov, Chemical Sensors: Comprehensive Sensor Technologies, Vol 6, Chemical Sensors Applications. New York: Momentum Press, Jun. 2011. [4] GCMS-TQ8040 Gas Chromatograph Mass Spectrometer. [Online]. Available: http://www.shimadzu.com/an/gcms/8040/8040_index.html (accessed 29 May, 2015). [5] B. Tudu, A. Metla, B. Das, N. Bhattacharyya, A. Jana, D. Ghosh, and R. Bandyopadhyay, “Towards Versatile Electronic Nose Pattern Classifier for Black Tea Quality Evaluation: An Incremental Fuzzy Approach,” IEEE Trans. Instrum. Meas., vol. 58, no. 9, pp. 3069–3078, Sep. 2009. [6] I. Concina, M. Falasconi, and V. Sberveglieri, “Electronic Noses as Flexible Tools to Assess Food Quality and Safety: Should We Trust Them?” IEEE Sensors J., vol. 12, no. 11, pp. 3232–3237, Nov. 2012. [7] C. Arnold, M. Harms, and J. Goschnick, “Air Quality Monitoring and Fire Detection with the Karlsruhe Electronic Micronose KAMINA,” IEEE Sensors J., vol. 2, no. 3, pp. 179–188, Jun. 2002. [8] D.-J. Yao, “A Gas Sensing System for Indoor Air Quality Control and Polluted Environmental Monitoring,” in Proc. IEEE Conf. Nanotechnol., Jul. 2009, pp. 806–811. [9] M. A. Ryan, K. S. Manatt, S. Gluck, A. V. Shevade, A. K. Kisor, H. Zhou, L. M. Lara, and M. L. Homer, “The JPL Electronic Nose: Monitoring Air in the U.S. Lab on the International Space Station,” in Proc. IEEE Conf. Sensors, Nov. 2010, pp. 1242–1247. [10] K. I. Arshak, C. Cunniffe, E. G. Moore, and L. M. Cavanagh, “Custom Electronic Nose with Potential Homeland Security Applications,” in Proc. IEEE Sensors Applicat. Symp., 2006, pp. 30–35. [11] D. Guo, D. Zhang, N. Li, D. Zhang, and J. Yang, “A Novel Breath Analysis System Based on Electronic Olfaction,” IEEE Trans. Biomed. Eng., vol. 57, no. 11, pp. 2753–2763, Nov. 2010. [12] A. D’Amico, C. D. Natale, R. Paolesse, A. Macagnano, E. Martinelli, G. Pennazza, M. Santonico, M. Bernabei, C. Roscioni, G. Galluccio, R. Bono, E. F. Agrò, and S. Rullo, “Olfactory Systems for Medical Applications,” Sensors and Actuators B: Chemical, vol. 130, no. 1, pp. 458 – 465, 2008. [13] A. H. Abdullah, A. H. Adom, A. Y. M. Shakaff, M. N. Ahmad, A. Zakaria, F. S. A. Saad, C. M. N. C. Isa, M. J. Masnan, and L. M. Kamarudin, “Hand-Held Electronic Nose Sensor Selection System for Basal Stamp Rot (BSR) Disease Detection,” in Proc. Int. Conf. Intell. Syst. Modelling and Simulation (ISMS), Feb. 2012, pp. 737–742. [14] JPL Electronic Nose. [Online]. Available: http://enose.jpl.nasa.gov (accessed 29 May, 2015). [15] J. B. Chang and V. Subramanian, “Electronic Noses Sniff Success,” IEEE Spectrum, vol. 45, no. 3, pp. 50–56, Mar. 2008. [16] K.-T. Tang, S.-W. Chiu, M.-F. Chang, C.-C. Hsieh, and J.-M. Shyu, “A Wearable Electronic Nose SoC for Healthier Living,” in IEEE Biomedical Circuits and Systems Conference (BioCAS), Nov. 2011, pp. 293–296. [17] K.-T. Tang, S.-W. Chiu, C.-H. Shih, C.-L. Chang, C.-M. Yang, D.-J. Yao, J.-H. Wang, C.-M. Huang, H. Chen, K.-H. Chang, C.-C. Hsieh, T.-H. Chang, M.-F. Chang, C.-M. Wang, Y.-W. Liu, T.-J. Chen, C.-H. Yang, H. Chiueh, and J.-M. Shyu, “A 0.5V 1.27mW Nose-on-a-Chip for Rapid Diagnosis of Ventilator-Associated Pneumonia,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 420–421. [18] R. W. Moncrieff, “An Instrument for Measuring and Classifying Odours,” Journal of Applied Physiology, vol. 16, no. 4, pp. 742–749, Jul. 1961. [19] K. Persaud and G. Dodd, “Analysis of Discrimination Mechanisms in the Mammalian Olfactory System Using a Model Nose,” Nature, vol. 299, pp. 352–355, Sep. 1982. [20] J. R. Stetter and W. R. Penrose. (2001, Aug.) THE ELECTROCHEMICAL NOSE. [Online]. Available: http://knowledge.electrochem.org/encycl/art-n01-nose.htm (accessed 29 May, 2015). [21] J. R. Stetter, S. Zaromb, and M. W. F. Jr., “Monitoring of Electrochemically Inactive Compounds by Amperometric Gas Sensors,” Sensors and Actuators, vol. 6, no. 4, pp. 269–288, 1984. [22] J. W. Gardner, “Pattern Recognition in the Warwick Electronic Nose,” in Proc. Int. Congress of European Chemoreception Research Organisation, University of Warwick, UK, Jul. 1988. [23] J. W. Gardner and P. N. Bartlett, Sensors and Sensory Systems for an Electronic Nose. Germany: Springer Netherlands, Apr. 1992. [24] J. W. Gardner and P. N. Bartlett, “A Brief History of Electronic Noses,” Sensors and Actuators B: Chemical, vol. 18, no. 1-3, pp. 210 – 211, 1994. [25] S. Thuret, L. D. F. Moon, and F. H. Gage, “Therapeutic Interventions after Spinal Cord Injury,” Nat. Rev. Neurosci., vol. 7, no. 8, pp. 628–643, Aug. 2006. [26] N. Barsan, D. Koziej, and U. Weimar, “Metal oxide-based gas sensor research: How to?” Sensors and Actuators B: Chemical, vol. 121, no. 1, pp. 18–35, Jan. 2007. [27] B. Guo, A. Bermak, P. C. Chan, and G.-Z. Yan, “Characterization of Integrated Tin Oxide Gas Sensors With Metal Additives and Ion Implantations,” IEEE Sensors J., vol. 8, no. 8, pp. 1397–1398, Aug. 2008. [28] B. Guo, A. Bermak, P. C. Chan, and G.-Z. Yan, “An Integrated Surface Micromachined Convex Microhotplate Structure for Tin Oxide Gas Sensor Array,” IEEE Sensors J., vol. 7, no. 12, pp. 1720–1726, Dec. 2007. [29] R. Kumar, R. R. Das, V. N. Mishra, and R. Dwivedi, “A Neuro-Fuzzy Classifier-Cum-Quantifier for Analysis of Alcohols and Alcoholic Beverages Using Responses of Thick-Film Tin Oxide Gas Sensor Array,” IEEE Sensors J., vol. 10, no. 9, pp. 1461–1468, Sep. 2010. [30] I. Kiselev, M. Sommer, J. K. Mann, and V. V. Sysoev, “Employment of Electric Potential to Build a Gas-Selective Response of Metal Oxide Gas Sensor Array,” IEEE Sensors J., vol. 10, no. 4, pp. 849–855, Apr. 2010. [31] M. Aleixandre, J. Lozano, J. Gutiérrez, I. Sayago, M. Fernández, and M. Horrillo, “Portable E-Nose to Classify Different Kinds of Wine,” Sensors and Actuators B: Chemical, vol. 131, no. 1, pp. 71 – 76, Apr. 2008. [32] T. C. Pearce, S. S. Schiffman, H. T. Nagle, and J. W. Gardner, Handbook of Machine Olfaction: Electronic Nose Technology. Wiley-VCH, Weinheim, Jan. 2006. [33] Figaro. [Online]. Available: http://www.figarosensor.com/ (accessed 29 May, 2015). [34] F. K. C. Harun, J. E. Taylor, J. A. Covington, and J. W. Gardner, “An Electronic Nose Employing Dual-Channel Odour Separation Columns with Large Chemosensor Arrays for Advanced Odour Discrimination,” Sensors and Actuators B: Chemical, vol. 141, no. 1, pp. 134 – 140, Aug. 2009. [35] New Electronic Nose which can Smell Out Gases. [Online]. Available: http://www.sensorland.com/AppPage014.html (accessed 29 May, 2015). [36] K. Arshak, E. Moore, G. M. Lyons, J. Harris, and S. Clifford, “A Review of Gas Sensors Employed in Electronic Nose Applications,” Sensor Review, vol. 24, no. 2, pp. 181–198, 2004. [37] C.-Y. Wu, “An Integrated Conducting Polymer Gas Sensor Array and Its Adaptive Interface Circuit Compatible with Standard CMOS Processes for an Electronic Nose Chip,” Master’s thesis, National Tsing Hua University, 2010. [38] M. J. Moure, P. Rodiz, M. D. Valdéz, L. Rodriguez-Pardo, and J. Fariña, “An FPGA-based system for the measurement of frequency noise and resolution of QCM sensors,” Latin American applied research, vol. 37, no. 1, pp. 25–30, 2007. [39] M. F. Hribšek, V. Tošic Dejan, and R. Radosavljevic Miroslav, “Surface Acoustic Wave Sensors in Mechanical Engineering,” FME transactions, vol. 38, no. 1, pp. 11–18, 2010. [40] C.-H. Li, “Interface Circuits for a Portable Electronic Nose Based on Surface Acoustic Wave Sensor Array,” Master’s thesis, National Tsing Hua University, 2010. [41] X. Zhang, M. Liu, B. Wang, H. Chen, and Z. Wang, “A Wide Measurement Range and Fast Update Rate Integrated Interface for Capacitive Sensors Array,” IEEE Trans. Circuits and Syst. I: Reg. Papers, vol. 61, no. 1, pp. 2–11, Jan 2014. [42] Z. Tan, S. H. Shalmany, G. C. M. Meijer, and M. A. Pertijs, “An Energy-Efficient 15-Bit Capacitive-Sensor Interface Based on Period Modulation,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1703–1711, July 2012. [43] P. Bruschi, N. Nizza, and M. Dei, “A Low-Power Capacitance to Pulse Width Converter for MEMS Interfacing,” in European Solid-State Circuits Conf., Sept 2008, pp. 446–449. [44] H. Danneels, K. Coddens, and G. Gielen, “A Fully-Digital, 0.3V, 270 nW Capacitive Sensor Interface without External References,” in European Solid-State Circuits Conf., Sept 2011, pp. 287–290. [45] H. Ha, D. Sylvester, D. Blaauw, and J.-Y. Sim, “A 160nW 63.9fJ/Conversion-Step Capacitance-to-Digital Converter for Ultra-Low-Power Wireless Sensor Nodes,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb 2014, pp. 220–221. [46] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 7th ed. Oxford University Press, Apr. 2014. [47] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, April 2010. [48] K. R. Laker and W. M. C. Sansen, Design of Analog Integrated Circuits and Systems. McGraw-Hill Companies, Jan. 1994. |