帳號:guest(3.128.173.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳翊佳
作者(外文):Yi-Chia Chen
論文名稱(中文):具有可調式阻抗以達成最大功率傳輸之無線充電接收端介面設計
論文名稱(外文):An Interface Design of Wireless Power Transfer Receiver with Impedance Adjustment for Maximum Power Transfer
指導教授(中文):謝秉璇
指導教授(外文):Ping-Hsuan Hsieh
口試委員(中文):張振豪
黃柏鈞
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061567
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:50
中文關鍵詞:無線充電線圈共振變異接收端介面有效負載相位差交流-直流轉換器控制共軛複數阻抗匹配最大功率轉 換主動式二極體效率
外文關鍵詞:Wireless power transferWPTcoupling coilfrequency mismatchvariationreceiverinterfaceeffective loadingphase differenceAC-DCconvertercontrolcomplex-conjugate impedance matchingmaximum power transferactive diodeefficiency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:873
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,無線充電一直是眾人熱烈討論的新穎技術。過往有關電路部分的研究大多假設兩線圈完美地共振在操作頻率上,並著墨於如何解決線圈之間距離拉長而使接收端收到的能量降低,避免輸入端峰值電壓降低的情況下造成後端電路無法正常操作。然而,製造過程中所產生的非理想變異會使得線圈的共振頻率偏離操作頻率,並降低整體系統的表現與所得功率。本篇論文中,我們提出了一種新式接收端介面設計,利用時間點來控制接收端的運作與調整介面上的有效負載。此外,藉由控制介面電壓與迴路電流之間的相位差,我們成功地在迴路中做到共軛複數阻抗匹配,並達成最大功率傳輸。在接收端介面架構中,我們採用一改良後的直接交流-直流升壓轉換器,使用主動式二極體開關並減少傳輸路徑上所使用的開關數量,在10mW的輸入功率下達成70%的功率轉換效率。我們整體電路是採用台積電0.18μm CMOS製程進行設計。在6.78MHz的操作頻率下,模擬所得最大功率傳輸效率最大可至94%,交流-直流升壓轉換器最大的轉換效率為66%,而最終輸出端所得功率為6mW。
In recent years, wireless power transfer (WPT) has become a popular technology. Most prior work focuses on how to maintain the operation when the distance between coupling coils become larger by assuming that the coupling coils are perfectly resonating at operating frequency. However, frequency mismatch due to process variations decreases the system performance and the received power. In this work, we propose a new receiver interface that adjusts the effective loading at the power receiving interface with timing control of the receiver operation. Furthermore, by controlling the relative phase shift between the interface voltage and loop current, we achieve complex-conjugate impedance matching and therefore maximum power transfer. For the interface architecture, we adopt an improved direct AC-DC boost converter. The reduced number of switches in the power path along with the use of active diodes results in a power conversion efficiency of 70% at input power of 10mW. This interface circuit is designed in TSMC 0.18μm CMOS process. Operating at 6.78MHz, the simulated maximum power transfer efficiency and conversion efficiency are 94% and 66%, and the output power is 6mW.
1 Introduction.............................................1
2 WPT System Interface.....................................7
2.1 Tx/Rx Resonant Coils Design and Considerations.........8
2.1.1 Circuit Model Analysis...............................9
2.1.2 Design Considerations................................11
2.2 Impedance-Adjustable Receiver for Wireless Power Transfer System.....15
3 Circuit Design and Implementation........................26
3.1 Proposed Direct AC-DC Converter........................26
3.2 Control Circuit........................................31
3.3 Timing Controller......................................32
3.3.1 Controllable Delay...................................34
3.3.2 Differentiator.......................................35
3.4 Active Diode Controller................................36
4 Simulation Results.......................................38
4.1 Chip Layout............................................39
4.2 Pre and Post-Layout Simulation.........................40
4.3 Comparison.............................................44
5 Conclusion...............................................46
Bibliography...............................................47
[1] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strong coupled magnetic resonances,” Science, vol. 317, pp. 83–86, July 2007.
[2] J.-H. Choi, S.-K. Yeo, S. Park, J.-S. Lee, and G.-H. Cho, “Resonant regulating rectifiers (3r) operating for 6.78 mhz resonantwireless power transfer (rwpt),” IEEE Journal of Solid-State Circuits, vol. 48, pp. 2989–3001, December 2013.
[3] H.-M. Lee and M. Ghovanloo, “An adaptive reconfigurable active voltage doubler/rectifier for extended-range inductive power transmission,” IEEE International Solid-State Circuits Conference, vol. 16, pp. 286–288, February 2012.
[4] R. Shinoda, K. Tomita, Y. Hasegawa, and H. Ishikuro, “Voltage-boosting wireless power delivery system with fast load tracker by ΔΣ-modulated sub-harmonic resonant switching,” IEEE International Solid-State Circuits Conference, vol. 16, pp. 288–290, February 2012.
[5] X. Li, C.-Y. Tsui, and W.-H. Ki, “A 13.56 mhz wireless power transfer systemwith reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices,” IEEE Journal of Solid-State Circuits, vol. 50, pp. 978–989, April 2015.
[6] P. T. Bhatti and K. D. Wise, “A 32-site 4-channel high-density electrode array for a cochlear prosthesis,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2965–2973, December 2006.
[7] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu, “An integrated 256-channel epiretinal prosthesis,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 1946–1956, September 2010.
[8] E. G. Kilinc, C. Baj-Rossi, S. Ghoreishizadeh, S. Riario, F. Stradolini, C. Boero, G. D. Micheli, F. Maloberti, S. Carrara, and C. Dehollain, “A system for wireless power transfer and data communication of long-term bio-monitoring,” IEEE sensors journal, vol. 15, pp. 6559–6569, November 2015.
[9] C.-C. Wu, H.-W. Chiu, D.-S. Lee, M.-H. Chang, C.-C. Lu, and C.-N. Chang, “High q inductor design using modified magnetic substrate structure,” Wireless Power Transfer Conference, pp. 284–287, May 2014.
[10] M. Zargham and P. G. Gulak, “Maximum achievable efficiency in near- field coupled power-transfer systems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, pp. 228–245, June 2012.
[11] R. Jay and S. Palermo, “Resonant coupling analysis for a two-coil wireless power transfer system,” Circuits and Systems Conference (DCAS), 2014 IEEE Dallas, pp. 1–4, October 2014.
[12] E. Dallago, A. Danioni, MarcoMarchesi, V. Nucita, and G. Venchi, “A self-powered electronic interface for electromagnetic energy harvester,” IEEE Transactions on Power Electronics, vol. 26, pp. 3174–3182, November 2011.
[13] D. Maurath, P. F. Becker, D. Spreemann, and Y. Manoli, “Efficient energy harvesting with electromagnetic energy transducers using active low-voltage rectification and maximum power point tracking,” IEEE Journal of Solid-State Circuits, vol. 47, pp. 1369–1380, June 2012.
[14] M. Shim, J. Kim, J. Jung, and C. Kim, “Self-powered 30μw-to-10mw piezoelectric energy- harvesting system with 9.09ms/v maximum power point tracking time,” IEEE International Solid-State Circuits Conference, vol. 23, pp. 406–407, February 2014.
[15] J. Leicht, M. Amayreh, C. Moranz, D. Maurath, T. Hehn, and Y. Marioli, “Electromagnetic vibration energy harvester interface ic with conduction-angle-controlled maximum-power-point tracking and harvesting efficiencies of up to 90%,” IEEE International Solid-State Circuits Conference, vol. 20, pp. 1–3, February 2015.
[16] D. K. Cheng, Field and Wave Electromagnetics. Addison Wesley, 1989.
[17] A4WP, A4WP Wireless Power Transfer System Baseline System Specification (BSS) A4WP-S-0001 v1.2. January 2014.
[18] S. Dwari and L. Parsa, “An efficient ac–dc step-up converter for low-voltage energy harvesting,” IEEE Transactions on Power Electronics, vol. 25, pp. 2188–2199, August 2010.
[19] M. W. Baker and R. Sarpeshkar, “Feedback analysis and design of rf power links for low-power bionic systems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, pp. 28–38, March 2007.
[20] A. Radecki, H. Chung, Y. Yoshida, N. Miura, T. Shidei, H. Ishikuro, and T. Kuroda, “6w/25mm2 inductive power transfer for non-contact wafer-level testing,” IEEE International Solid-State Circuits Conference, vol. 12, pp. 230–232, February 2011.
[21] K. Kotani, A. Sasaki, and T. Ito, “High-efficiency differential-drive cmos rectifier for uhf rfids,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3011–3018, November 2009.
[22] T.-C. Huang, M.-J. Du, K.-L. Lin, S. S. Ng, K.-H. Chen, C.-L. Wey, Y.-H. Lin, T.-Y. Tsai, C.-C. Huang, C.-C. Lee, J.-L. Chen, and H.-W. Chen, “A direct ac-dc and dcdc cross-source energy harvesting circuit with analog iterating-based mppt technique with 72.5% conversion efficiency and 94.6% tracking efficiency,” 2014 Symposium on VLSI Circuits Digest of Technical Papers, pp. 1–2, June 2014.
[23] E. Bonizzoni, F. Borghetti, P. Malcovati, F. Maloberti, and B. Niessen, “A 200ma 93% peak efficiency single-inductor dual-output dc-dc buck converter,” IEEE International Solid-State Circuits Conference, vol. 29, pp. 526–619, February 2007.
[24] M.-H. Huang and K.-H. Chen, “Single-inductor multi-output (simo) dc-dc converters with high light-load efficiency and minimized cross-regulation for portable devices,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 1099–1111, April 2009.
[25] S. Bandyopadhyay and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with mppt and single inductor,” IEEE Journal of Solid-State Circuits, vol. 47, pp. 2199–2215, September 2012.
[26] A. Berger, M. Agostinelli, S. Vesti, J. A. Oliver, J. A. Cobos, and M. Huemer, “A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extractable power,” IEEE Transactions on Power Electronics, vol. 30, pp. 6338–6348, November 2015.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *