|
參考文獻 [1] A. Djourno, C. Eyriès, “Prothèse auditive par excitation électrique à distance du nerf sensoriel à l'aide d'un bobinage inclus à demeure.” In: La Presse Médicale 65 no.63. 1957. [2] G. Handa, “Neural Prosthesis – Past, Present and Future,” Indian Journal of Physical Medicine & Rehabilitation, vol.17, Apr. 2006. [3] “Cochlear Implants, ” National Institute on Deafness and Other Communication Disorders, no. 11-4798, Mar. 2011. [4] S. Furman, G. Szarka, D. Layvand, "Reconstruction of Hyman's second pacemaker", Pacing Cl in Electrophysiol. 28(5):446-453, May 2005. [5] J. Cleland, J. Daubert , E. Erdmann, et al; the Cardiac Resynchronization — Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. , Mar. 7 2005. [6] J. Cleland, J. Daubert, E. Erdmann, N. Freemantle, D. Gras, L. Kappenberger, and L. Tavazzi., "The effect of cardiac resynchronization on morbidity and mortality in heart failure". N Engl J Med 352 (15): 1539-49. [7] D. Chun, J. Heier, and M. Raizman., "Visual prosthetic device for bilateral end-stage macular degeneration." Expert Rev Med Devices. 2 (6): 657-65. [8] S. Lane and B. Kuppermann., "The Implantable Miniature Telescope for macular degeneration." Curr Opin Ophthalmol. 17 (1): 94-8. [9] J.D. Loudin, D.M. Simanovskii, K. Vijayraghavan, C.K. Sramek, A.F. Butterwick, P. Huie, G.Y. McLean, and D.V. Palanker (2007)., "Optoelectronic retinal prosthesis: system design and performance". J Neural Engineering 4: S72–S84. [10] A. Villavicencio, J. Leveque, L. Rubin, K. Bulsara, and J. Gorecki JP., "Laminectomy versus percutaneous electrode placement for spinal cord stimulation". Neurosurgery 46 (2): 399-405; discussion 405-6. [11] J. Oakley and J. Prager., "Spinal cord stimulation: mechanisms of action". Spine 27: 2574-83. [12] M. Matharu, T. Bartsch , N. Ward, R. Frackowiak, R. Weiner, and P. Goadsby., "Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study". Brain 127 (Pt 1): 220-30. [13] R. North, D. Kidd, F. Farrokhi, and S. Piantadosi., "Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial". Neurosurgery 56 (1): 98-106; discussion 106-7. [14] R. Schmidt, A. Jonas, K. Oleson, R. Janknegt, M. Hassouna, S. Siegel, and P. Kerrebroeck. Sacral nerve stimulation for treatment of refractory urinary urge incontinence. Sacral nerve study group. J Urol 1999 Aug;16(2):352-357. [15] J. Carmena, M. Lebedev, R. Crist, J. O’Doherty, D. Santucci, D. Dimitrov, P. Patil, C. Henriquez, and M. Nicolelis, M.A.L. "Learning to control a brain-machine interface for reaching and grasping by primates. " PLoS Biology, 1: 193-208. [16] M. Lebedev, J. Carmena, J. O’Doherty, M. Zacksenhouse, C. Henriquez, J. Principe, and M. Nicolelis, "Cortical ensemble adaptation to represent actuators controlled by a brain machine interface. " J. Neurosci. 25: 4681-4693. [17] M. Serruya, N. Hatsopoulos, L. Paninski, M. Fellows, and J. Donoghue, Instant neural control of a movement signal. Nature 416: 141-142. [18] http://www.indiahospitaltour.com/index.html [19] http://www.eyeok.com.tw/07/主題三:底片層次—網膜的構造與功能 [20] http://140.114.14.182/drupal7_qs/node/46 [21] S. Haddad, R. Houben, and W. Serdijin ,"The evolution of pacemakers, " IEEE Engineering in Medicine and Biology Magazine, vol.25,pp. 38-48, 2006. [22] W. Liu, M. Sivaprakasam, G. Wang, M. Zhou, and J. Granacki, “Implantable biomimetic microelectronic systems design,” IEEE Engineering in Medicine and Biology Magazine, pp.66-74, 2005. [23] C. Huang, S. Yen, and C. Wang,, "A Li-ion battery charging design for biomedical implants," IEEE Asia Pacific Conf on Circuits and Syst , pp. 400-403, 2008 [24] S. Roundy, E. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. Rabaey, P. Wright, and V. Sundararajan, "Improving power output for vibration-based energy scavengers," IEEE Pervasive Computing, vol.4, pp. 28-36, 2005. [25] J. Piella, “Energy Management, wireless and system solutions for highly integrated implantable devices”, Doctoral dissertation, Departament d’Enginyeria Electronica Universitat Autonoma de Barcelona, 2001. [26] H. McDermott, “A custom-designed receiver-stimulator chip for an advanced multiple-channel hearing prosthesis,” IEEE J. Solid-State Circuits, vol. 26, pp. 1161–1164, Aug. 1991. [27] K. Stangel, et al., “A programmable intraocular CMOS pressure sensor system implant,” IEEE J. Solid-State Circuits (JSSC), vol. 36, pp. 1094–1100,Jul. 2001. [28] U. Kaiser and W. Steinhaugen, “A low-power transponder IC for high performance identification systems,” IEEE J. Solid-State Circuits, vol.30, pp. 306–310, Mar. 1995. [29] C.-S.A. Gong, Kai-Wen Yao, Jyun-Yue Hong, Kun-Yi Lin, and Muh-Tian Shiue, "Efficient CMOS rectifier for inductively power-harvested implants," IEEE Int. Conf. of Electron Devices and Solid-State Circuits, vol., no., pp.1,4, 8-10 Dec. 2008 [30] Song Guo and Hoi Lee, "An Efficiency-Enhanced CMOS Rectifier With Unbalanced-Biased Comparators for Transcutaneous-Powered High-Current Implants," IEEE J. Solid-State Circuits, vol.44, no.6, pp.1796,1804, Jun. 2009 [31] Hyung-Min Lee; Ghovanloo, M., "An Adaptive Reconfigurable Active Voltage Doubler/Rectifier for Extended-Range Inductive Power Transmission," IEEE Trans. Circuits and Systems-II: Express Briefs on , vol.59, no.8, pp.481,485, Aug. 2012 [32] Hyung-Min Lee; Hangue Park; Ghovanloo, M., "A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation," , IEEE J. Solid-State Circuits, vol.48, no.9, pp.2203,2216, Sept. 2013 [33] Yan Lu; Xing Li, Wing-Hung Ki, Chi-Ying Tsui, and Yue, C.P., "A 13.56MHz fully integrated 1X/2X active rectifier with compensated bias current for inductively powered devices," IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), vol., no., pp.66,67, 17-21 Feb. 2013 [34] G. Rincon-Mora and P. Allen, “Study and Design of Low Drop-out Regulators,” School of Electrical and Computer Engineering Georgia. [35] G. Rincon-Mora and P. Allen, “A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 36–44, Jan. 1998. [36] El-Nozahi, M., Amer, A., Torres, J., Entesari, K., and Sanchez-Sinencio, E., "High PSR Low Drop-Out Regulator With Feed-Forward Ripple Cancellation Technique," IEEE J. Solid-State Circuits, vol.45, no.3, pp.565,577, Mar. 2010 [37] Yeung, S., Guo, J., and Leung, K.N., "25 mA LDO with -63 dB PSRR at 30 MHz for WiMAX," Electronics Letters , vol.46, no.15, pp.1080,1081, Jul. 22 2010 [38] Jianping Guo and Ka Nang Leung, "A 25mA CMOS LDO with −85dB PSRR at 2.5MHz," IEEE Asian Solid-State Circuits Conference (A-SSCC), vol., no., pp.381,384, 11-13 Nov. 2013 [39] Gupta, V. and Rincon-Mora, G.A., "A 5mA 0.6μm CMOS Miller-Compensated LDO Regulator with -27dB Worst-Case Power-Supply Rejection Using 60pF of On-Chip Capacitance," IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), vol., no., pp.520,521, 11-15 Feb. 2007 [40] Bangda Yang; Drost, B.; Rao, S.; Hanumolu, P.K., "A high-PSR LDO using a feedforward supply-noise cancellation technique," IEEE Custom Integrated Circuits Conf. (CICC), vol., no., pp.1,4, 19-21 Sept. 2011 [41] Ho, E.N.Y. and Mok, P.K.T., "Wide-Loading-Range Fully Integrated LDR With a Power-Supply Ripple Injection Filter," IEEE Trans. Circuits and Systems II: Express Briefs, , vol.59, no.6, pp.356,360, Jun. 2012 [42] Chang-Joon Park, Onabajo, M., and Silva-Martinez, J., "External Capacitor-Less Low Drop-Out Regulator With 25 dB Superior Power Supply Rejection in the 0.4–4 MHz Range," IEEE J. Solid-State Circuits (JSSC), vol.49, no.2, pp.486,501, Feb. 2014 [43] L. Zou, and T. Larsen, “Dynamic power control circuit for implantable biomedical devices,” IET Circuits, Devices and Systems, vol.5 , pp.297-302, 2011. [44] Jhao-Yan Liu; Kea-Tiong Tang, "A novel wireless power and data transmission AC to DC converter for an implantable device," IEEE Conf. Engineering in Medicine and Biology Society (EMBC), Annual Int., vol., no., pp.1875,1878, 3-7 Jul. 2013 [45] Young, D.J., "Wireless powering and data telemetry for biomedical implants," IEEE Conf. Engineering in Medicine and Biology Society (EMBC). vol., no., pp.3221,3224, 3-6 Sept. 2009 [46] S. Hashemi, M. Sawan, and Y. Savaria, “A High-Efficiency Low- Voltage CMOS Rectifier for Harvesting Energy in Implantable Devices,” IEEE Transactions on Biomedical Circuits and Systems (TBioCAS). vol. 6, no. 4, pp. 326–335,Aug. 2012. [47] T. Man, P. Mok, and M. Chan, “A High Slew-Rate Push-Pull Output Amplifier for Low-Quiescent Current Low-Dropout Regulators With Transient-Response Improvement,” IEEE Trans. on Circuits and Systems—II: Express Briefs. on, vol. 54, no. 9, pp. 755–759, Sept. 2007. [48] K. Ueno, T. Hirose, T. Asai and Y. Amemiya, “A 300 nW, 15 ppm/C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs,” IEEE J. Solid-State Circuits (JSSC), vol.44, no.7, pp. 2047-2054, Jul. 2009.
|