帳號:guest(3.145.65.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳彥甫
作者(外文):Chen, Yen Fu
論文名稱(中文):應用於生醫植入式裝置之高電源拒斥低壓降線性穩壓器無線電力傳輸系統電路
論文名稱(外文):Wireless Power Transmission System with High PSR LDO Regulator for a Biomedical Implantable Device
指導教授(中文):鄭桂忠
指導教授(外文):Tang, Kea Tiong
口試委員(中文):李順裕
陳新
口試委員(外文):Lee, Shuenn Yuh
Chen, Hsin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061562
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:無線能量傳輸生醫植入晶片
外文關鍵詞:Wireless power transmission systemBiomedical implantable system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:473
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,植入式生物醫學裝置被廣泛應用在現代醫學中,如人工視網膜和深腦刺激器。由於植入式裝置必須長期在皮膚下操作,因此,無線電力傳輸系統被廣泛的應用在植入式裝置系統中。
本論文提出一個交流對直流轉換器,結合了全波整流器、高電源抑制線性穩壓器以及內建一個電壓回授控制系統。此電路系統僅需一個小電容便可達到高雜訊抑制的效果,其中高電源抑制線性穩壓器在10 MHz操作頻率下,電源抑制 (Power Supply Rejection, PSR) 效能達到了-43.5dB,在附載切換時的電壓飄移控制在30 mV以下。此外,一組電壓回授控制電路能調便接收端線圈的諧振電容值,避免全波整流器接收到過大的耦合能量造成內部電路損壞,並可提高線性穩壓器的功率轉換效率。
在無線能量傳輸情況下,傳輸距離1 cm時,外部功率放大器可產生足夠的交流能量以電磁耦合方式傳輸至植入端電路,而植入端電路會將所接收到的交流能量透過全波整流器將其轉換為直流,再經由LDO穩壓器穩壓後產生一個穩定的電源供植入端電路使用。而在此同時,一組電壓回授控制電路會判斷所接收到的能量大小並產生不同責任週期 (Duty Cycle) 的PWM (Pulse Width Modulation) 訊號來控制接收端線圈的諧振頻率,藉以調整接收端線圈所得到的能量大小,使植入端電路接收到適當大小的能量,避免電路的損壞。
晶片電路部分使用TSMC 0.18 um 1P6M製程,總面積約為0.383 mm^2 (不包含Pad),操作在10 MHz頻率下可提供一個3.3 V穩定輸出電源,最大附載電流為5 mA。
In recent years, devoted researches of implantable biomedical devices have been studied from modern medicine, such as Artificial Retina and Deep Brain Stimulation. Since the implanted devices operate underneath the skin for a long term, wireless power transmission systems are widely adopted.
This thesis presents a wireless power transmission system with a full-wave rectifier, high power supply rejection (PSR) low dropout (LDO) regulator and a voltage feedback control system. The system can provide a stable DC source for implanted devices, and the system only need a small rectification capacitor. The proposed LDO achieves high PSR performance of -43.5 dB at 10 MHz without any external capacitor. Moreover, the power controller is also adopted in the system to feedback control the received power by adjusting resonant capacitance. It help prevent the device from being damaged by excessive power.
The circuit is fabricated with the TSMC 0.18 um 1P6M CMOS process and occupies area of 0.383 mm^2. It can provide a stable output voltage of 3.3 V and load current of 5 mA at 10 MHz.
目錄
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第1章 緒論 1
1.1 研究背景 1
1.2 植入式裝置基本原理 3
1.3 研究動機 5
1.4 章節簡介 7
第2章 文獻回顧 8
2.1 植入式系統應用 8
2.2 植入式系統能量傳輸 12
2.3 植入式系統漣波抑制 15
2.4 植入式系統能量控制 18
第3章 植入式系統電路 20
3.1 系統架構 20
3.2 低壓降整流器與回授電路 22
3.2.1 電路架構 22
3.2.2 模擬結果 26
3.3 高雜訊抑制穩壓器 29
3.3.1 電路架構 29
3.3.2 模擬結果 35
3.4 晶片布局 44
第4章 晶片量測結果與能量傳輸實驗 45
4.1 低壓降整流器與回授電路 46
4.2 高雜訊抑制穩壓器 49
4.3 能量傳輸實驗 57
4.3.1 功率放大器 57
4.3.2 傳輸系統架設 59
4.3.3 實驗結果 60
第5章 結論 65
5.1 總結 65
5.2 未來工作 67
參考文獻 68

參考文獻
[1] A. Djourno, C. Eyriès, “Prothèse auditive par excitation électrique à distance du nerf sensoriel à l'aide d'un bobinage inclus à demeure.” In: La Presse Médicale 65 no.63. 1957.
[2] G. Handa, “Neural Prosthesis – Past, Present and Future,” Indian Journal of Physical Medicine & Rehabilitation, vol.17, Apr. 2006.
[3] “Cochlear Implants, ” National Institute on Deafness and Other Communication Disorders, no. 11-4798, Mar. 2011.
[4] S. Furman, G. Szarka, D. Layvand, "Reconstruction of Hyman's second pacemaker", Pacing Cl in Electrophysiol. 28(5):446-453, May 2005.
[5] J. Cleland, J. Daubert , E. Erdmann, et al; the Cardiac Resynchronization — Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. , Mar. 7 2005.
[6] J. Cleland, J. Daubert, E. Erdmann, N. Freemantle, D. Gras, L. Kappenberger, and L. Tavazzi., "The effect of cardiac resynchronization on morbidity and mortality in heart failure". N Engl J Med 352 (15): 1539-49.
[7] D. Chun, J. Heier, and M. Raizman., "Visual prosthetic device for bilateral end-stage macular degeneration." Expert Rev Med Devices. 2 (6): 657-65.
[8] S. Lane and B. Kuppermann., "The Implantable Miniature Telescope for macular degeneration." Curr Opin Ophthalmol. 17 (1): 94-8.
[9] J.D. Loudin, D.M. Simanovskii, K. Vijayraghavan, C.K. Sramek, A.F. Butterwick, P. Huie, G.Y. McLean, and D.V. Palanker (2007)., "Optoelectronic retinal prosthesis: system design and performance". J Neural Engineering 4: S72–S84.
[10] A. Villavicencio, J. Leveque, L. Rubin, K. Bulsara, and J. Gorecki JP., "Laminectomy versus percutaneous electrode placement for spinal cord stimulation". Neurosurgery 46 (2): 399-405; discussion 405-6.
[11] J. Oakley and J. Prager., "Spinal cord stimulation: mechanisms of action". Spine 27: 2574-83.
[12] M. Matharu, T. Bartsch , N. Ward, R. Frackowiak, R. Weiner, and P. Goadsby., "Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study". Brain 127 (Pt 1): 220-30.
[13] R. North, D. Kidd, F. Farrokhi, and S. Piantadosi., "Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial". Neurosurgery 56 (1): 98-106; discussion 106-7.
[14] R. Schmidt, A. Jonas, K. Oleson, R. Janknegt, M. Hassouna, S. Siegel, and P. Kerrebroeck. Sacral nerve stimulation for treatment of refractory urinary urge incontinence. Sacral nerve study group. J Urol 1999 Aug;16(2):352-357.
[15] J. Carmena, M. Lebedev, R. Crist, J. O’Doherty, D. Santucci, D. Dimitrov, P. Patil, C. Henriquez, and M. Nicolelis, M.A.L. "Learning to control a brain-machine interface for reaching and grasping by primates. " PLoS Biology, 1: 193-208.
[16] M. Lebedev, J. Carmena, J. O’Doherty, M. Zacksenhouse, C. Henriquez, J. Principe, and M. Nicolelis, "Cortical ensemble adaptation to represent actuators controlled by a brain machine interface. " J. Neurosci. 25: 4681-4693.
[17] M. Serruya, N. Hatsopoulos, L. Paninski, M. Fellows, and J. Donoghue, Instant neural control of a movement signal. Nature 416: 141-142.
[18] http://www.indiahospitaltour.com/index.html
[19] http://www.eyeok.com.tw/07/主題三:底片層次—網膜的構造與功能
[20] http://140.114.14.182/drupal7_qs/node/46
[21] S. Haddad, R. Houben, and W. Serdijin ,"The evolution of pacemakers, " IEEE Engineering in Medicine and Biology Magazine, vol.25,pp. 38-48, 2006.
[22] W. Liu, M. Sivaprakasam, G. Wang, M. Zhou, and J. Granacki, “Implantable biomimetic microelectronic systems design,” IEEE Engineering in Medicine and Biology Magazine, pp.66-74, 2005.
[23] C. Huang, S. Yen, and C. Wang,, "A Li-ion battery charging design for biomedical implants," IEEE Asia Pacific Conf on Circuits and Syst , pp. 400-403, 2008
[24] S. Roundy, E. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. Rabaey, P. Wright, and V. Sundararajan, "Improving power output for vibration-based energy scavengers," IEEE Pervasive Computing, vol.4, pp. 28-36, 2005.
[25] J. Piella, “Energy Management, wireless and system solutions for highly integrated implantable devices”, Doctoral dissertation, Departament d’Enginyeria Electronica Universitat Autonoma de Barcelona, 2001.
[26] H. McDermott, “A custom-designed receiver-stimulator chip for an advanced multiple-channel hearing prosthesis,” IEEE J. Solid-State Circuits, vol. 26, pp. 1161–1164, Aug. 1991.
[27] K. Stangel, et al., “A programmable intraocular CMOS pressure sensor system implant,” IEEE J. Solid-State Circuits (JSSC), vol. 36, pp. 1094–1100,Jul. 2001.
[28] U. Kaiser and W. Steinhaugen, “A low-power transponder IC for high performance identification systems,” IEEE J. Solid-State Circuits, vol.30, pp. 306–310, Mar. 1995.
[29] C.-S.A. Gong, Kai-Wen Yao, Jyun-Yue Hong, Kun-Yi Lin, and Muh-Tian Shiue, "Efficient CMOS rectifier for inductively power-harvested implants," IEEE Int. Conf. of Electron Devices and Solid-State Circuits, vol., no., pp.1,4, 8-10 Dec. 2008
[30] Song Guo and Hoi Lee, "An Efficiency-Enhanced CMOS Rectifier With Unbalanced-Biased Comparators for Transcutaneous-Powered High-Current Implants," IEEE J. Solid-State Circuits, vol.44, no.6, pp.1796,1804, Jun. 2009
[31] Hyung-Min Lee; Ghovanloo, M., "An Adaptive Reconfigurable Active Voltage Doubler/Rectifier for Extended-Range Inductive Power Transmission," IEEE Trans. Circuits and Systems-II: Express Briefs on , vol.59, no.8, pp.481,485, Aug. 2012
[32] Hyung-Min Lee; Hangue Park; Ghovanloo, M., "A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation," , IEEE J. Solid-State Circuits, vol.48, no.9, pp.2203,2216, Sept. 2013
[33] Yan Lu; Xing Li, Wing-Hung Ki, Chi-Ying Tsui, and Yue, C.P., "A 13.56MHz fully integrated 1X/2X active rectifier with compensated bias current for inductively powered devices," IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), vol., no., pp.66,67, 17-21 Feb. 2013
[34] G. Rincon-Mora and P. Allen, “Study and Design of Low Drop-out Regulators,” School of Electrical and Computer Engineering Georgia.
[35] G. Rincon-Mora and P. Allen, “A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 36–44, Jan. 1998.
[36] El-Nozahi, M., Amer, A., Torres, J., Entesari, K., and Sanchez-Sinencio, E., "High PSR Low Drop-Out Regulator With Feed-Forward Ripple Cancellation Technique," IEEE J. Solid-State Circuits, vol.45, no.3, pp.565,577, Mar. 2010
[37] Yeung, S., Guo, J., and Leung, K.N., "25 mA LDO with -63 dB PSRR at 30 MHz for WiMAX," Electronics Letters , vol.46, no.15, pp.1080,1081, Jul. 22 2010
[38] Jianping Guo and Ka Nang Leung, "A 25mA CMOS LDO with −85dB PSRR at 2.5MHz," IEEE Asian Solid-State Circuits Conference (A-SSCC), vol., no., pp.381,384, 11-13 Nov. 2013
[39] Gupta, V. and Rincon-Mora, G.A., "A 5mA 0.6μm CMOS Miller-Compensated LDO Regulator with -27dB Worst-Case Power-Supply Rejection Using 60pF of On-Chip Capacitance," IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), vol., no., pp.520,521, 11-15 Feb. 2007
[40] Bangda Yang; Drost, B.; Rao, S.; Hanumolu, P.K., "A high-PSR LDO using a feedforward supply-noise cancellation technique," IEEE Custom Integrated Circuits Conf. (CICC), vol., no., pp.1,4, 19-21 Sept. 2011
[41] Ho, E.N.Y. and Mok, P.K.T., "Wide-Loading-Range Fully Integrated LDR With a Power-Supply Ripple Injection Filter," IEEE Trans. Circuits and Systems II: Express Briefs, , vol.59, no.6, pp.356,360, Jun. 2012
[42] Chang-Joon Park, Onabajo, M., and Silva-Martinez, J., "External Capacitor-Less Low Drop-Out Regulator With 25 dB Superior Power Supply Rejection in the 0.4–4 MHz Range," IEEE J. Solid-State Circuits (JSSC), vol.49, no.2, pp.486,501, Feb. 2014
[43] L. Zou, and T. Larsen, “Dynamic power control circuit for implantable biomedical devices,” IET Circuits, Devices and Systems, vol.5 , pp.297-302, 2011.
[44] Jhao-Yan Liu; Kea-Tiong Tang, "A novel wireless power and data transmission AC to DC converter for an implantable device," IEEE Conf. Engineering in Medicine and Biology Society (EMBC), Annual Int., vol., no., pp.1875,1878, 3-7 Jul. 2013
[45] Young, D.J., "Wireless powering and data telemetry for biomedical implants," IEEE Conf. Engineering in Medicine and Biology Society (EMBC). vol., no., pp.3221,3224, 3-6 Sept. 2009
[46] S. Hashemi, M. Sawan, and Y. Savaria, “A High-Efficiency Low- Voltage CMOS Rectifier for Harvesting Energy in Implantable Devices,” IEEE Transactions on Biomedical Circuits and Systems (TBioCAS). vol. 6, no. 4, pp. 326–335,Aug. 2012.
[47] T. Man, P. Mok, and M. Chan, “A High Slew-Rate Push-Pull Output Amplifier for Low-Quiescent Current Low-Dropout Regulators With Transient-Response Improvement,” IEEE Trans. on Circuits and Systems—II: Express Briefs. on, vol. 54, no. 9, pp. 755–759, Sept. 2007.
[48] K. Ueno, T. Hirose, T. Asai and Y. Amemiya, “A 300 nW, 15 ppm/C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs,” IEEE J. Solid-State Circuits (JSSC), vol.44, no.7, pp. 2047-2054, Jul. 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *