帳號:guest(3.133.143.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李沛蓁
作者(外文):Lee, Pei Chen
論文名稱(中文):可應用於物聯網之十位元低功耗連續近似類比數位轉換器利用輸入電壓適應性電容切換技術
論文名稱(外文):A 10-bit Power-Efficient SAR ADC with Input-Range-Adaptive Switching DAC for Internet of Things
指導教授(中文):謝志成
指導教授(外文):Hsieh, Chih-Cheng
口試委員(中文):李泰成
洪浩喬
鄭桂忠
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061556
出版年(民國):104
畢業學年度:104
語文別:英文
論文頁數:90
中文關鍵詞:連續近似類比數位轉換器低電壓低功耗
外文關鍵詞:SAR ADClow voltagelow power
相關次數:
  • 推薦推薦:0
  • 點閱點閱:200
  • 評分評分:*****
  • 下載下載:28
  • 收藏收藏:0
本論文提出一個可應用於物聯網之十位元低電壓及高能源效率連續近似(SAR)類比數位轉換器(ADC)。
為達到良好功率消耗表現,本論文所提出之類比數位轉換器操作於超低電壓的0.35伏特至0.5伏特。此架構重複利用比較器(comparator),在比較雙端輸入電壓值時,同時將輸入電壓轉化成時域資訊,並利用時域量化器(time-domain quantizer)在同一比較週期內直接判斷輸入電壓之電壓範圍。此類比數位轉換器基於Vcm-based切換方式提出具輸入電壓適應性(input-range-adaptive)的電容切換方式,此方式可以維持固定的共模準位電壓,並大幅節省類比數位轉換器(DAC)之電容切換耗能。
為驗證本電路,此架構使用90奈米1P9M互補式金氧半導體製程製作,晶片總面積為1133×1133μm2,核心電路面積為390×97μm2,在0.35至0.5伏特電源電壓及相對應的300千至2百萬赫茲取樣頻率操作下,此晶片在Nyquist頻率訊號輸入時實現之SNDR為從55.5至56.3dB,其對應的ENOB為8.92至9.06bit,功率消耗為0.3至2.5微瓦,等效的figure of merit (FoM)為1.94至2.32fJ/conversion-step。
This thesis presents an ultra-low voltage and power-efficient 10-bit successive-approximation register (SAR) analog-to-digital converter (ADC) for Internet of Things (IoT).
The proposed ADC operates at ultra-low supply voltage from 0.35V to 0.5V to save power consumption. This architecture reuses a comparator as a voltage-to-time converter and implements a time-domain quantizer. The comparator converts voltage difference of input signal sampled on DACs to MSB result and the corresponding comparison time simultaneously, and then time-domain quantizer detects the input range. An input-range-adaptive (IRA) switching method is proposed to significantly reduce the average switching power of capacitive-DAC (CDAC) and keep common-mode voltage constant.
The prototype was fabricated in 90nm 1P9M CMOS technology with a core area of 390×97μm2. At 0.35V-to-0.5V supply voltage and 300kS/s-to-2MS/s sampling rate, the ADC achieves SNDR from 55.5dB to 56.3dB corresponding ENOB from 8.92bit to 9.06bit at Nyquist-frequency input and consumes power from 0.3μW to 2.5μW, resulting in a figure of merit (FoM) from 1.94 fJ/conversion-step to 2.32fJ/conversion-step.
Content
Abstract ii
Content iii
List of Figures vi
List of Tables ix
Chapter 1 Introduction 1
1.1 Architecture Selection 2
1.2 Performance Metrics of SAR ADC 4
1.2.1 Nyquist Criterion 4
1.2.2 Resolution 5
1.2.3 Quantization Error 5
1.2.4 Offset and Gain Error 6
1.2.5 Differential Nonlinearity 7
1.2.6 Integral Nonlinearity 7
1.2.7 Signal-to-Noise Ratio 8
1.2.8 Dynamic Range 8
1.2.9 Figure of Merit 9
1.3 Target Specifications 9
1.4 Thesis Organization 10
Chapter 2 Successive Approximation Register ADC Overview 11
2.1 Introduction 11
2.2 Operation Procedure of Conventional SAR ADC 12
2.3 Considerations of Sample and Hold 13
2.3.1 KT/C Noise 14
2.3.2 Sampling Speed 14
2.3.3 Charge Injection 15
2.3.4 Clock Feedthrough 16
2.4 Considerations of Capacitive DAC 17
2.4.1 DAC Parasitic Capacitance 18
2.4.2 DAC Capacitor Mismatch 19
2.4.3 Settling Time 19
2.5 Considerations of Comparator 20
2.5.1 Input Offset 21
2.5.2 Kickback Noise 22
2.6 SAR Control Logic 22
2.7 Summary 24
Chapter 3 Circuit Design Considerations 25
3.1 Differential SAR ADC 25
3.2 CDAC Switching Energy 26
3.2.1 Conventional DAC Switching 27
3.2.2 Monotonic DAC Switching 30
3.2.3 Vcm-Based DAC Switching 32
3.2.4 Proposed Input Range Adaptive Switching Technique 34
3.3 Comparator 36
3.4 Time-Domain Quantizer 37
3.5 Sample and Hold 39
3.6 Digital SAR Control Logic 40
3.7 Summary 41
Chapter 4 Circuit Implementation of Successive Approximation ADC 43
4.1 Architecture of Proposed SAR ADC 43
4.2 Design of Sample and Hold 47
4.3 Design of Capacitive DAC 48
4.4 Design of Comparator 50
4.5 Design of Time-Domain Quantizer 51
4.6 Digital Control Logic 53
4.7 Calibration Procedure 55
4.7.1 Calibration of Comparator 56
4.7.2 Calibration of Delay Element 56
4.8 Pre-Layout and Post-Layout Simulations 57
4.9 Summary 59
Chapter 5 Measurement Results 61
5.1 Measurement Environment Setup 61
5.2 Measurement Results 61
5.2.1 Static Performance 62
5.2.2 Dynamic Performance 63
5.2.3 Performance Discussion 65
5.3 Performance Summary and Comparison 69
5.4 Summary 71
Chapter 6 Conclusion and Future Work 73
6.1 Conclusion 73
6.2 Future Work 73
Bibliography 75
Bibliography
[1] W. Fan and Y. Li. (2010, May. 10). Opportunities, Challenges and Practices of the Internet of Things [Online]. Available: http://wwwen.zte.com.cn/endata/magazine/ztetechnologies/2010/no5/articles/201005/t20100510_184418.html
[2] H. Chen, B. Wei, and D. Ma, "Energy Storage and Management System With Carbon Nanotube Supercapacitor and Multidirectional Power Delivery Capability for Autonomous Wireless Sensor Nodes," IEEE Trans. Power Electronics, vol. 25, pp. 2897-2909, Sep. 2010.
[3] B. Murmann. (2015, Jul. 12). ADC Performance Survey 1997-2015 [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[4] T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd ed.: WILEY, 2012.
[5] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd ed.: WILEY, 2010.
[6] M. Ahmadi and N. Won, "A 3.3fJ/conversion-step 250kS/s 10b SAR ADC using optimized vote allocation," in Prom. IEEE Custom Integrated Circuits Conf. (CICC), 2013, pp. 1-4.
[7] C.-Y. Liou and C.-C. Hsieh, "A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS," in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 280-281.
[8] H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, "A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS," in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196-197.
[9] Y.J. Chen and C.-C. Hsieh, "A 0.4V 2.02fJ/conversion-step 10-bit hybrid SAR ADC with time-domain quantizer in 90nm CMOS," in Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1-2.
[10] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed.: McGraw-Hill 2002.
[11] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," IEEE Trans. Circuits and Systems II, Express Briefs, vol. 53, pp. 541-545, Jul. 2006.
[12] A. Rossi and G. Fucili, "Nonredundant successive approximation register for A/D converters," Electronics Lett., vol. 32, pp. 1055-1057, Jun. 1996.
[13] Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M. Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, and T. Kuroda, "Split capacitor DAC mismatch calibration in successive approximation ADC," in Prom. IEEE Custom Integrated Circuits Conf. (CICC), 2009, pp. 279-282.
[14] S.-S. Wong, Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, and R. P. Martins, "Parasitic calibration by two-step ratio approaching technique for split capacitor array SAR ADCs," in Proc. Int. SoC Design Conference (ISOCC), 2009, pp. 333-336.
[15] Y. Zhu, U.-F. Chio, H.-G. Wei, S.-W. Sin, S.-P. U, and R. P. Martins, "Linearity analysis on a series-split capacitor array for high-speed SAR ADCs," in Proc. 51st IEEE Int. Midwest Symp. Circuits and Systems (MWSCAS), 2008, pp. 922-925.
[16] S. Lei, Q. Dai, C. Lee, and G. Qiao, "Analysis on Capacitor Mismatch and Parasitic Capacitors Effect of Improved Segmented-Capacitor Array in SAR ADC," in 3rd Int. Symp. Intelligent Information Technology Application (IITA), 2009, pp. 280-283.
[17] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, and R. P. Martins, "A voltage feedback charge compensation technique for split DAC architecture in SAR ADCs," in IEEE Symp. Circuits and Systems (ISCAS), 2010, pp. 4061-4064.
[18] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, "A 10b 50MS/s 820μW SAR ADC with on-chip digital calibration," in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 384-385.
[19] W.-Y. Pang, C.-S. Wang, Y.-K. Chang, N.-K. Chou, and C.-K. Wang, "A 10-bit 500-KS/s low power SAR ADC with splitting comparator for bio-medical applications," in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2009, pp. 149-152.
[20] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, "A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13µm CMOS process," in Symp. VLSI Circuits Dig. Tech. Papers, 2009, pp. 236-237.
[21] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," IEEE J. Solid-State Circuits, vol. 45, pp. 1111-1121, Jun. 2010.
[22] H.-Y. Huang, J.-Y. Lin, C.-C. Hsieh, W.-H. Chang, H.-H. Tsai, and C.-F. Chiu, "A 9.2b 47fJ/conversion-step asynchronous SAR ADC with input range prediction DAC switching," in IEEE Symp. Circuits and Systems (ISCAS), 2012, pp. 2353-2356.
[23] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE J. Solid-State Circuits, vol. 45, pp. 731-740, Apr. 2010.
[24] A. Rodríguez-Vázquez, F. Medeiro, and E. Janssens, CMOS Telecom Data Converters: Kluwer Academic Publisher, 2003.
[25] G.-Y. Huang, C.-C. Liu, Y.-Z. Lin, and S.-J. Chang, "A 10-bit 12-MS/s successive approximation ADC with 1.2-pF input capacitance," in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2009, pp. 157-160.
[26] X. Zhou and Q. Li, "A 160mV 670nW 8-bit SAR ADC in 0.13μm CMOS," in Proc. IEEE Custom Integrated Circuits Conference (CICC), 2012, pp. 1-4.
[27] S.-I. Chang, K. Al-Ashmouny, and E. Yoon, "A 0.5V 20fJ/conversion-step rail-to-rail SAR ADC with programmable time-delayed control units for low-power biomedical application," in Proc. ESSCIRC, 2011, pp. 339-342.
[28] K. Ishida, K. Kanda, A. Tamtrakarn., H. Kawaguchi, and T. Sakurai, "Managing subthreshold leakage in charge-based analog circuits with low-VTH transistors by analog T- switch (AT-switch) and super cut-off CMOS (SCCMOS)," IEEE J. Solid-State Circuits, vol. 41, pp. 859-867, Apr. 2006.
[29] P. Harpe, C. Zhou, X. Wang, G. Dolmans, and H. de Groot, "A 30fJ/conversion-step 8b 0-to-10MS/s asynchronous SAR ADC in 90nm CMOS," in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 388-389.
[30] G. van der Plas, S. Decoutere, and S. Donnay, "A 0.16pJ/Conversion-Step 2.5mW 1.25GS/s 4b ADC in a 90nm Digital CMOS Process," in IEEE ISSCC Dig. Tech. Papers, 2006, p. 2310.
[31] P. J. A. Harpe, C. Zhou, Y. Bi, N. P. van der Meijs, X. Wang, K. Philips, G. Dolmans, and H. de Groot, "A 26 μW 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios," IEEE J. Solid-State Circuits, vol. 46, pp. 1585-1595, May. 2011.
[32] H.-Y. Tai, H.-W. Chen, and H.-S. Chen, "A 3.2fJ/c.-s. 0.35V 10b 100KS/s SAR ADC in 90nm CMOS," in Symp. VLSI Circuits Dig. Tech. Papers, 2012, pp. 92-93.
[33] K.-H. Chiang, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, "A 10b 100kS/s SAR ADC with charge recycling switching method," in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2014, pp. 329-332.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *