帳號:guest(18.217.182.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李易庭
作者(外文):Lee, Yi-Ting
論文名稱(中文):應用於生醫方面之嵌入式系統處理平台
論文名稱(外文):An Embedded Processor Platform for Biomedical Applications
指導教授(中文):馬席彬
指導教授(外文):Ma, Hsi-Pin
口試委員(中文):馬席彬
蔡佩芸
闕河鳴
吳炤民
口試委員(外文):Hsi-Pin Ma
Pei-Yun Tsai
Herming Chiueh
Chao-Min Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061554
出版年(民國):103
畢業學年度:103
語文別:英文
論文頁數:84
中文關鍵詞:腦機介面開源處理器帕金森氏症生醫系統神經訊號處理
外文關鍵詞:Brain Machine InterfaceOpen Source ProcessorParkinson's DiseaseBiomedical SystemNeural Signal Processing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:285
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
在此篇論文中,我們提出兩種不同的腦機介面解決方案,並且都和類比前端電路、刺激電路以及無線資料傳輸電路整合。在電路後端的部分更與使用者介面來做結合以期達到使這些微型化系統能夠真正地運用在臨床的實驗上,更進一步的希望能夠完成一個具有醫療效用的腦機介面去幫助那些深受帕金森氏症所惱的病人。
在我們所提出的第一個系統架構下,數位核心部分是一個改良過8051的可程式化數位電路,其工作頻率是操作在2百萬赫茲,以及基於減少功率消耗的考量下,整體電路則操作在1伏特電壓。整個數位核心電路提供了8個通道的即時記錄和有效刺激功能來得到關於如何利用刺激來調節神經活動和抑制帕金森氏症的訊息。從神經元的紀錄數據,所提出之改良過後的Lempel-Ziv無損數據壓縮電路將輸入數據處理之後構成的字典來替代輸入信號。 除此之外,醫師可以輸入刺激參數和觀察所記錄到的神經訊號藉由在電腦上的圖形化用戶界面(GUI)。此數位核心電路與植入式神經微系統已經整合下線驗證,使用的是台積電的0.18微米標準CMOS技術。數位核心電路的功率消耗為385微瓦,整個晶片面積為3.06×2.53平方毫米而數位核心部分則為2.09×0.59平方毫米。
在第二版微型化系統則提出了一個實驗研究方法,藉由一個嵌入式生醫系統處理平台來進行生物醫學信號演算法處理,並藉由這些演算法分析來達成深部腦刺激(DBS)。此嵌入式生醫系統處理平台是基於OpenRISC1200處理器(OR1200)來實現高取樣率(4千赫茲)以及多通道記錄(2通道)大腦神經元記錄的目的。因此,生物信號前處理,基於不同頻率解析度的功率頻譜分析(1024,512和256點)和相位分析是由本生物醫學處理器所進行。此生物醫學處理器由台積電0.18微米標準CMOS技術電路合成下,整體硬體所占面積是52800邏輯閘數並且可以在100百萬赫茲工作頻率下運行。但是,受限於Altera公司的DE2-115的Cyclone IV E EP4CE115F29C7 現場可程式化閘陣列板(FPGA)最大系統操作頻率為50百萬赫茲,則此生醫處理器平台最高只能在50百萬赫茲。在電信量測後,這些系統的評估以及所有的實驗結果都會在本論文中詳細描述與討論。
In this thesis, two solutions of brain machine interfaces (BMI) are proposed. Both of them
are integrated with analog front-end circuits, stimulation circuits and wireless data transmission
module. Moreover, these systems are further combined with the graphical user interface
(GUI) to achieve the goal that a complete microsystem can be actually applied in clinical experiments.
In addition, this microsystem also provides another treatment with medical efficacy
for those patients with Parkinson’s disease.
In the version I, a programmable digital core based on modified 8051 is operated at 2MHz
clock rate and 1V operation voltage to reduce the power consumption. This digital core provides
8 channels real-time recording as well as 8 channels effective stimulation for acquiring
information on how stimulation modulate neural activities and depressing the symptom of
Parkinson’s disease. As the recording data from neurons, the Lemp-Ziv lossless data compression
circuit compresses the data by the dictionary constructed of input data processing.
Additionally, physicians can input the stimulation parameters and observe the recording neural
informations on a PC through the graphical user interface (GUI). The digital core integrated
with implantable neural microsystem has been fabricated with TSMC standard 0.18m
CMOS technology. The power consumption of the digital core is 385W with 2.09*0.59mm2
core area, and the full chip area is 3.06*2.53mm2.
In the version II, the prototyping system is proposed for experimental study of the deep
brain stimulation (DBS) mechanism by embedding the biomedical signal processing algorithms
to biomedical processor. The biomedical processor based on OpenRISC 1200 (OR1200)
is implemented to achieve the goal that performs neuron recording with high sampling rate
(4KHz) for the purpose of multi-channel recording (2 channels). Therefore, the signal preprocessing,
varied resolutions of power spectral analysis(1024, 512 and 256 points) and the
ii
phase analysis are conducted by this biomedical processor. As this biomedical processor is
synthesized by TSMC standard 0.18m CMOS technology, the overall hardware area is 52.8K
gate counts and the operating clock rate can be operated at 100MHz. However, the maximum
system clock rate is 50MHz in this biomedical platform due to the limitation of the Altera
DE2-115 Cyclone IV E EP4CE115F29C7 FPGA board. The resource of this FPGA design
costs 3,811 logic elements and 662,528 memory bits. After the electrical measurements for
evaluating of these systems, all of the experimental results are presented and discussed in this
thesis.
iv CONTENTS
4 System Architecture 29
4.1 Implantable Neural Microsystem . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.1 Recording System . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 Stimulation System . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 Wireless Power and Data Transmission System . . . . . . . . . . . . 32
4.1.4 The Digital Core Based on an Ameliorated Microcontroller 8051 . . . 33
4.1.5 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.6 System Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 An Experimental Study of Micro-Stimulation and Recording System for Using
in Brain Machine Interface . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1 Recording System . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Voltage Controlled Stimulation (VCS) Front-End . . . . . . . . . . . 37
4.2.3 Biomedical Processor Based on OR1200 . . . . . . . . . . . . . . . 38
4.2.4 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.5 System Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 System-on-Chip Design of Digital Core for Biomedical Platform 43
5.1 The Design of Digital Core Based on 8051 . . . . . . . . . . . . . . . . . . . 43
5.1.1 Firmware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 The Design of Biomedical Processor Based on OR1200 . . . . . . . . . . . . 49
5.2.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Firmware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.3 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6 Implementation and Experimental Results 59
6.1 Mixed-signal System-on-Chip Integration of Implantable Neural Microsystem 59
6.1.1 ASIC Implementation Results . . . . . . . . . . . . . . . . . . . . . 59
6.1.2 Electrical Measurements . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Experimental Results of Micro-Stimulation and Recording System for Using
in Brain Machine Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
CONTENTS v
6.2.1 Simulation Results of Digital Processor . . . . . . . . . . . . . . . . 68
6.2.2 Electrical Measurements . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Comparison with Other Studies . . . . . . . . . . . . . . . . . . . . . . . . . 73
7 Conclusions and Future Prospects 77
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
[1] Y.-C. Chen, Y.-P. Lin, T.-L. Hsieh, C.-Y. Yeh, P.-Y. Huang, H.-C. Chiu, Z.-Y. Wang, W.-
Y. Hsu, P.-C. Huang, K.-T. Tang, H.-P. Ma, and H. Chen, “An implantable microsystem
for studying the Parkinson’s Disease,” in IEEE Asia Pacific Conference on Circuits and
Systems (APCCAS), Dec 2012, pp. 92–95.
[2] Y.-P. Lin, H.-C. Chiu, P.-Y. Huang, Z.-Y. Wang, H.-H. Cheng, P.-C. Huang, K.-T. Tang,
H.-P. Ma, and H. Chen, “An implantable microsystem for long-term study on the mechanism
of deep brain stimulation,” in IEEE Biomedical Circuits and Systems Conference
(BioCAS), Oct 2013, pp. 274–277.
[3] H.-C. Chiu, Y.-T. Lee, C.-F. Chuang, Y.-C. Chang, S.-R. Yeh, P.-C. Huang, and H.-P.
Ma, “An intelligent brain machine interface with wireless micro-stimulation and neural
recording,” in IEEE-EMBS International Conference on Biomedical and Health Informatics
(BHI), June 2014, pp. 460–463.
[4] Parkinsons Disease Foundation. (2006, December) General Parkinsons Disease Facts.
[Online]. Available: http://www.pdf.org/Publications/factsheets.cfm
[5] S. Breit, J. B. Schulz, and A.-L. Benabid, “Deep brain stimulation,” Cell and tissue
research, vol. 318, no. 1, pp. 275–288, 2004.
[6] F. A. Ponce and A. M. Lozano, “Deep brain stimulation: state of the art and novel
stimulation targets,” Progress in brain research, vol. 184, pp. 311–324, 2010.
[7] C. Loukas and P. Brown, “A PC-based system for predicting movement from
deep brain signals in Parkinson’s disease,” Computer Methods and Programs
80 BIBLIOGRAPHY
in Biomedicine, vol. 107, no. 1, pp. 36 – 44, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0169260712000867
[8] J. Ganssle and M. Barr, Embedded System Dictionary. Taylor and Francis, 2003.
[Online]. Available: http://books.google.com.au/books?id=zePGx82d fwC
[9] Wikipedia. (2014, April) Soft microprocessor. [Online]. Available: http://en.wikipedia.
org/wiki/Soft microprocessor
[10] Aeroflex. (2014, August) Aeroflex Microelectonic Solutions. [Online]. Available:
http://www.gaisler.com/
[11] Altera Corporation. (2014, August) Nios II Processor: The World’s Most Versatile
Embedded Processor. [Online]. Available: http://www.altera.com/devices/processor/
nios2/ni2-index.html
[12] Damjan Lampret, Julius Baxter. (2011, January) OpenRISC 1200 IP Core
Specification (Preliminary Draft). [Online]. Available: http://openrisc.net/or1200-spec.
html# openrisc 1200
[13] Raul Fajardo. (2010, September) Minimal OpenRISC System on Chip. [Online].
Available: http://opencores.org/project,minsoc
[14] ARM. (2012, October) Cortex-A15 Processor. [Online]. Available: http://www.arm.
com/products/processors/cortex-a/cortex-a15.php
[15] R. M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach, 1st ed. Piscataway,
NJ, USA: Wiley-IEEE Press, December 2001.
[16] P. Dayan and L.F.Abbottl, Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems, 1st ed. Cambridge, MA, USA: MIT Press/Elsevier,
September 2005.
[17] E. Niedermeyer and F. da Silva, Electroencephalography: Basic Principles, Clinical
Applications, and Related Fields, 5th ed. Philadelphia, PA, USA: Lippincott Williams
& Wilkins, November 2004.
BIBLIOGRAPHY 81
[18] P.-H. Tsai, C. Lin, J. Tsao, P.-F. Lin, P.-C. Wang, N. E. Huang, and
M.-T. Lo, “Empirical mode decomposition based detrended sample entropy
in electroencephalography for Alzheimer’s disease,” Journal of Neuroscience
Methods, vol. 210, no. 2, pp. 230–237, 2012. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S016502701200266X
[19] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex
Fourier Series,” Mathematics of Computation, vol. 19, no. 90, pp. 297–301, 1965.
[Online]. Available: http://www.jstor.org/stable/2003354
[20] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation,”
in 1998 URSI International Symposium Signals (ISSSE) on Systems, and Electronics,
Sep 1998, pp. 257–262.
[21] J. yeol Oh and M. seob Lim, “Fast Fourier transform processor based on low-power
and area-efficient algorithm,” in Proceedings of 2004 IEEE Asia-Pacific Conference on
Advanced System Integrated Circuits, Aug 2004, pp. 198–201.
[22] R. Levy, W. D. Hutchison, A. M. Lozano, and J. O. Dostrovsky, “High-frequency Synchronization
of Neuronal Activity in the Subthalamic Nucleus of Parkinsonian Patients
with Limb Tremor,” The Journal of Neuroscience, vol. 20, no. 20, pp. 7766–7775, 2000.
[23] P. Brown, “Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology
of Parkinson’s disease,” Movement Disorders, vol. 18, no. 4, pp. 357–363,
2003.
[24] L. Timmermann and E. Florin, “Parkinson’s disease and pathological oscillatory activity:
is the beta band the bad guy? - New lessons learned from low-frequency deep brain
stimulation,” Exp Neurol, vol. 233, no. 1, pp. 123–5, 2012.
[25] J. B. Toledo, J. Lopez-Azcarate, D. Garcia-Garcia, J. Guridi, M. Valencia, J. Artieda,
J. Obeso, M. Alegre, and M. Rodriguez-Oroz, “High beta activity in the subthalamic
nucleus and freezing of gait in Parkinson’s disease,” Neurobiol Dis, vol. 64, pp. 60–5,
2014.
82 BIBLIOGRAPHY
[26] A. K. Goliska, “Coherence function in biomedical signal processing: a short review of
applications in Neurology, Cardiology and Gynecology.”
[27] J. Lopez-Azcarate, M. Tainta, M. C. Rodriguez-Oroz, M. Valencia, R. Gonzalez,
J. Guridi, J. Iriarte, J. A. Obeso, J. Artieda, and M. Alegre, “Coupling between beta
and high-frequency activity in the human subthalamic nucleus may be a pathophysiological
mechanism in Parkinson’s disease,” J Neurosci, vol. 30, no. 19, pp. 6667–77,
2010.
[28] H. Yoo and C. van Hoof, Bio-Medical CMOS ICs. Springer US, 2010. [Online].
Available: http://books.google.com.tw/books?id=AQTVjwEACAAJ
[29] J. Craninckx and G. Van der Plas, “A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b
Charge-Sharing SAR ADC in 90nm Digital CMOS,” in IEEE International Solid-State
Circuits Conference (ISSCC) Digest of Technical Papers., Conference Proceedings, pp.
246–600.
[30] T. Chun-Yen, C. Shih-Chieh, T. K. Shia, and H. Po-Chiun, “An Integrated 1.2V-to-
6V CMOS Charge-Pump for Electret Earphone,” in IEEE Symposium VLSI Circuits,
Conference Proceedings, pp. 102–103.
[31] L. Hyung-Min and M. Ghovanloo, “An Integrated Power-Efficient Active Rectifier
With Offset-Controlled High Speed Comparators for Inductively Powered Applications,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 8, pp. 1749–
1760, 2011.
[32] H. Chia-Hao, T. Shao-Bin, H. Yi-Jie, andW. Chua-Chin, “One-Time-Implantable Spinal
Cord Stimulation System Prototype,” IEEE Transactions on Biomedical Circuits and
Systems, vol. 5, no. 5, pp. 490–498, 2011.
[33] X. Wangren, L. Zhenying, and S. Sonkusale, “Fully Digital BPSK Demodulator and
Multilevel LSK Back Telemetry for Biomedical Implant Transceivers,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 56, no. 9, pp. 714–718, 2009.
BIBLIOGRAPHY 83
[34] S. Mandal and R. Sarpeshkar, “Power-Efficient Impedance-Modulation Wireless Data
Links for Biomedical Implants,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 2, no. 4, pp. 301–315, 2008.
[35] C.-Y. Yeh, “An Information Hub for ImplantableWireless Brain Machine Interface,”
Master’s thesis, Department of Electrical Engineering, National Tsing Hua University,
Hsinchu, Taiwan, September 2012.
[36] Y. Chun-Yi, C. Hung-Chih, and M. Hsi-Pin, “An information hub for implantable wireless
brain machine interface,” in International Symposium on VLSI Design, Automation,
and Test (VLSI-DAT), Conference Proceedings, pp. 1–4.
[37] ANALOG DEVICE. (2003, October) AD7470/AD7472. [Online]. Available: http:
//www.analog.com/en/index.html
[38] K. Kota and J. Cavallaro, “Numerical accuracy and hardware tradeoffs for CORDIC
arithmetic for special-purpose processors,” IEEE Transactions on Computers, vol. 42,
no. 7, pp. 769–779, Jul 1993.
[39] R. Andraka, “A survey of CORDIC algorithms for FPGA based computers,” in Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. ACM, Conference Proceedings, pp. 191–200.
[40] OPENCORE.ORG. (2002, September) Specification for the: WISHBONE System-on-
Chip (SoC) Interconnection Architecture for Portable IP Cores. [Online]. Available:
http://cdn.opencores.org/downloads/wbspec b3.pdf
[41] H.-G. Rhew, J. Jeong, J. Fredenburg, S. Dodani, P. Patil, and M. Flynn, “A Fully
Self-Contained Logarithmic Closed-Loop Deep Brain Stimulation SoC With Wireless
Telemetry and Wireless Power Management,” IEEE Journal of Solid-State Circuits,
vol. PP, no. 99, pp. 1–15, 2014.
[42] K. Abdelhalim, H. M. Jafari, L. Kokarovtseva, J. L. Perez Velazquez, and R. Genov,
“64-Channel UWB Wireless Neural Vector Analyzer SoC With a Closed-Loop Phase
84 BIBLIOGRAPHY
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *