帳號:guest(3.12.136.218)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳秉琨
作者(外文):Chen, Bing-Kun
論文名稱(中文):利用啟動子-核醣體結合位元件庫於大腸桿菌中建立一基於群體感應機制強化金屬離子偵測能力之放大器
論文名稱(外文):Amplifier-based quorum sensing design via promoter-RBS library for metal ions detection enhancement in Escherichia coli
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):謝秉璇
沈若樸
口試委員(外文):Ping-Hsuan Hsieh
Roa-Pu Shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061544
出版年(民國):103
畢業學年度:103
語文別:英文
論文頁數:83
中文關鍵詞:群體感應金屬離子偵測感測器放大器
外文關鍵詞:quorum sensingmetal ion detectionbiosensoramplifier
相關次數:
  • 推薦推薦:0
  • 點閱點閱:78
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
合成生物學係指重新改造細胞之行為程序以及利用數學模型進而達到藥物治療、綠能生活以及環境生態復育等目的之學門,於此篇研究中,我們設計一放大器來強化生物感測器對於金屬離子偵測之能力,此假設之放大器係利用金屬誘導系統和細菌群體感應系統兩者在細胞膜的通透性以及不同啟動子的激活能力來達到放大功能,作為放大器設計之應用。我們選擇了兩個銅離子誘導系統以及一個鉛離子誘導系統來分析具放大器之生物感測系統與一般生物感測系統之間的金屬離子偵測性能比較;於所建立好的合成基因電路之動態方程後,我們可以透過定義完善之元件庫以及已估測之動態參數來預測細胞的行為及響應表現,而於具放大器生物感測器系統電路之中的放大器模塊中挑選不同強度的啟動子-核醣體結合位元件,透過數學模擬可分析具放大器之生物感測器提供了不同的金屬離子偵測能力,可提供設計者基於不同偵測需求來選擇元件之強度,最後,實驗結果亦證實所假設之放大器設計的確能夠提升生物感測器對於金屬離子之偵測能力的表現。
Synthetic biology reengineers cell programs and employees mathematical methods for the purposes of the medical treatment, green energy and environment remediation etc.. In this study, an amplifier-based biosensor is designed for enhancing the metal ion detection performance. The proposed amplifier utilizes the difference of cell membrane permeability and promoter abilities between metal ion-induced system and bacteria quorum sensing system to achieve the amplifying function. For the applications of amplifier-based biosensor, we choose two copper-induced systems and one lead-induced system to exploit the better metal ion detection performance of the amplifier-based biosensor system than that of the conventional biosensor system. After constructing the dynamic equations of synthetic genetic circuits, we could predict the cell responses with well-characteristic component libraries and well-identified kinetic parameters. And with the selection of various strengths promoter-RBS components in the amplifier part of amplifier-based biosensor system, we can offer different detection specifications of amplifier-based biosensor system in silicon. Selection of various promoter-RBS components from the corresponding component libraries could provide designer with different detection requirement of metal ion biosensor. Finally, the experimental results verify that the proposed amplifier-based biosensor exactly could enhance the detection ability of metal ions.
摘 要
Abstract
Content
List of Figures
List of Tables
Introduction
Biosensor circuit and amplifier design for metal ion detection
2.1 Construction of copper biosensor circuit
2.2 Construction of lead biosensor circuit
2.3 Design of amplifier-based bacteria metal ion biosensor
2.4 Dynamic models of biosensor circuit
2.5 Dynamic models of amplifier-based biosensor systems
Detection ability and specification of amplifier-based metal ion biosensor with various promoter-RBS components
3.1 Methodology to characterize the promoter-RBS strength by genetic algorithm
3.2 Various detection specifications of amplifier-based biosensor in silico
3.3 Detection ability of biosensors without/with amplifier in vivo
3.4 Various design specifications of amplifier-based biosensor with different promoter-RBS components in vivo
Discussion
Conclusion
Reference
Figures
Tables
Supplementary Information
A. Supplementary Tables
B. Dynamic equation of catalysis process
C. Supplementary Figures
D. Material and Method
Genetic circuit constructions
Growth medium and GFP assay
Reference
[1] A. S. Khalil and J. J. Collins, "Synthetic biology: applications come of age," Nature Reviews Genetics, vol. 11, pp. 367-379, May 2010.
[2] B. J. Wang, R. I. Kitney, N. Joly, and M. Buck, "Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology," Nature Communications, vol. 2, Oct 2011.
[3] R. Silva-Rocha and V. de Lorenzo, "Engineering Multicellular Logic in Bacteria with Metabolic Wires," Acs Synthetic Biology, vol. 3, pp. 204-209, Apr 2014.
[4] J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. S. Tsimring, and J. Hasty, "A fast, robust and tunable synthetic gene oscillator," Nature, vol. 456, pp. 516-U39, Nov 27 2008.
[5] T. Danino, O. Mondragon-Palomino, L. Tsimring, and J. Hasty, "A synchronized quorum of genetic clocks," Nature, vol. 463, pp. 326-330, Jan 21 2010.
[6] Y. C. Chang, C. L. Lin, and T. Jennawasin, "Design of Synthetic Genetic Oscillators Using Evolutionary Optimization," Evolutionary Bioinformatics, vol. 9, 2013.
[7] T. Sohka, R. A. Heins, R. M. Phelan, J. M. Greisler, C. A. Townsend, and M. Ostermeier, "An externally tunable bacterial band-pass filter," Proceedings of the National Academy of Sciences of the United States of America, vol. 106, pp. 10135-10140, Jun 23 2009.
[8] A. H. M. van Vliet, S. Bereswill, and J. G. Kusters, "Ion Metabolism and Transport," in Helicobacter pylori: Physiology and Genetics, H. L. T. Mobley, G. L. Mendz, and S. L. Hazell, Eds., ed Washington (DC), 2001.
[9] A. Lawen and D. J. R. Lane, "Mammalian Iron Homeostasis in Health and Disease: Uptake, Storage, Transport, and Molecular Mechanisms of Action," Antioxidants & Redox Signaling, vol. 18, pp. 2473-2507, Jun 2013.
[10] W. E. Winter, L. A. L. Bazydlo, and N. S. Harris, "The Molecular Biology of Human Iron Metabolism," Labmedicine, vol. 45, pp. 92-102, Spr 2014.
[11] F. C. Neidhardt and R. Curtiss, Escherichia coli and Salmonella : cellular and molecular biology, 2nd ed. Washington, D.C.: ASM Press, 1996.
[12] P. V. Dunlap and A. Kuo, "Cell Density-Dependent Modulation of the Vibrio-Fischeri Luminescence System in the Absence of Autoinducer and Luxr Protein," Journal of Bacteriology, vol. 174, pp. 2440-2448, Apr 1992.
[13] W. C. Fuqua, S. C. Winans, and E. P. Greenberg, "Quorum Sensing in Bacteria - the Luxr-Luxi Family of Cell Density-Responsive Transcriptional Regulators," Journal of Bacteriology, vol. 176, pp. 269-275, Jan 1994.
[14] M. J. Mcfallngai and E. G. Ruby, "Symbiont Recognition and Subsequent Morphogenesis as Early Events in an Animal-Bacterial Mutualism," Science, vol. 254, pp. 1491-1493, Dec 6 1991.
[15] J. Engebrecht and M. Silverman, "Identification of Genes and Gene-Products Necessary for Bacterial Bioluminescence," Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, vol. 81, pp. 4154-4158, 1984.
[16] B. L. Hanzelka and E. P. Greenberg, "Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis," J Bacteriol, vol. 178, pp. 5291-4, Sep 1996.
[17] D. L. Val and J. E. Cronan, "In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases," Journal of Bacteriology, vol. 180, pp. 2644-2651, May 1998.
[18] J. H. Devine, G. S. Shadel, and T. O. Baldwin, "Identification of the Operator of the Lux Regulon from the Vibrio-Fischeri Strain Atcc7744," Proceedings of the National Academy of Sciences of the United States of America, vol. 86, pp. 5688-5692, Aug 1989.
[19] E. G. Ruby and M. J. Mcfallngai, "A Squid That Glows in the Night - Development of an Animal-Bacterial Mutualism," Journal of Bacteriology, vol. 174, pp. 4865-4870, Aug 1992.
[20] K. H. Nealson and J. W. Hastings, "Bacterial bioluminescence: its control and ecological significance," Microbiol Rev, vol. 43, pp. 496-518, Dec 1979.
[21] E. G. Ruby and K. H. Nealson, "Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies," Biol Bull, vol. 151, pp. 574-86, Dec 1976.
[22] H. B. Kaplan and E. P. Greenberg, "Diffusion of Autoinducer Is Involved in Regulation of the Vibrio-Fischeri Luminescence System," Journal of Bacteriology, vol. 163, pp. 1210-1214, 1985.
[23] M. B. Miller and B. L. Bassler, "Quorum sensing in bacteria," Annual Review of Microbiology, vol. 55, pp. 165-199, 2001.
[24] L. Passador, J. M. Cook, M. J. Gambello, L. Rust, and B. H. Iglewski, "Expression of Pseudomonas-Aeruginosa Virulence Genes Requires Cell-to-Cell Communication," Science, vol. 260, pp. 1127-1130, May 21 1993.
[25] J. M. Brint and D. E. Ohman, "Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family," J Bacteriol, vol. 177, pp. 7155-63, Dec 1995.
[26] J. P. Pearson, L. Passador, B. H. Iglewski, and E. P. Greenberg, "A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa," Proc Natl Acad Sci U S A, vol. 92, pp. 1490-4, Feb 28 1995.
[27] S. E. Darch, S. A. West, K. Winzer, and S. P. Diggle, "Density-dependent fitness benefits in quorum-sensing bacterial populations," Proc Natl Acad Sci U S A, vol. 109, pp. 8259-63, May 22 2012.
[28] F. Chen, E. A. Gaucher, N. A. Leal, D. Hutter, S. A. Havemann, S. Govindarajan, et al., "Reconstructed evolutionary adaptive paths give polymerases accepting reversible terminators for sequencing and SNP detection," Proceedings of the National Academy of Sciences of the United States of America, vol. 107, pp. 1948-1953, Feb 2 2010.
[29] K. Yamashiro, S. Yokobori, S. Koikeda, and A. Yamagishi, "Improvement of Bacillus circulans beta-amylase activity attained using the ancestral mutation method," Protein Engineering Design & Selection, vol. 23, pp. 519-528, Jul 2010.
[30] H. H. Wang, F. J. Isaacs, P. A. Carr, Z. Z. Sun, G. Xu, C. R. Forest, et al., "Programming cells by multiplex genome engineering and accelerated evolution," Nature, vol. 460, pp. 894-U133, Aug 13 2009.
[31] F. J. Isaacs, P. A. Carr, H. H. Wang, M. J. Lajoie, B. Sterling, L. Kraal, et al., "Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement," Science, vol. 333, pp. 348-353, Jul 15 2011.
[32] K. Bondarczuk and Z. Piotrowska-Seget, "Molecular basis of active copper resistance mechanisms in Gram-negative bacteria," Cell Biology and Toxicology, vol. 29, pp. 397-405, Dec 2013.
[33] C. L. Dupont, G. Grass, and C. Rensing, "Copper toxicity and the origin of bacterial resistance-new insights and applications," Metallomics, vol. 3, pp. 1109-1118, 2011.
[34] L. Macomber and J. A. Imlay, "The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity," Proceedings of the National Academy of Sciences of the United States of America, vol. 106, pp. 8344-8349, May 19 2009.
[35] S. Franke, G. Grass, C. Rensing, and D. H. Nies, "Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli," Journal of Bacteriology, vol. 185, pp. 3804-3812, Jul 2003.
[36] D. A. Rouch and N. L. Brown, "Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco," Microbiology-Uk, vol. 143, pp. 1191-1202, Apr 1997.
[37] S. M. Lee, G. Grass, C. Rensing, S. R. Barrett, C. J. D. Yates, J. V. Stoyanov, et al., "The Pco proteins are involved in periplasmic copper handling in Escherichia coli," Biochemical and Biophysical Research Communications, vol. 295, pp. 616-620, Jul 19 2002.
[38] S. Taghavi, M. Mergeay, D. Nies, and D. vanderLelie, "Alcaligenes eutrophus as a model system for bacterial interactions with heavy metals in the environment," Research in Microbiology, vol. 148, pp. 536-551, Jul-Aug 1997.
[39] B. Borremans, J. L. Hobman, A. Provoost, N. L. Brown, and D. van Der Lelie, "Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34," J Bacteriol, vol. 183, pp. 5651-8, Oct 2001.
[40] N. L. Brown, J. V. Stoyanov, S. P. Kidd, and J. L. Hobman, "The MerR family of transcriptional regulators," Fems Microbiology Reviews, vol. 27, pp. 145-163, Jun 2003.
[41] T. J. Tetaz and R. K. Luke, "Plasmid-controlled resistance to copper in Escherichia coli," J Bacteriol, vol. 154, pp. 1263-8, Jun 1983.
[42] G. P. Munson, D. L. Lam, F. W. Outten, and T. V. O'Halloran, "Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12," J Bacteriol, vol. 182, pp. 5864-71, Oct 2000.
[43] S. Ravikumar, I. Ganesh, I. K. Yoo, and S. H. Hong, "Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria," Process Biochemistry, vol. 47, pp. 758-765, May 2012.
[44] J. L. Hobman, D. J. Julian, and N. L. Brown, "Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34," Bmc Microbiology, vol. 12, Jun 18 2012.
[45] W. Wei, X. Liu, P. Sun, X. Wang, H. Zhu, M. Hong, et al., "Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon," Environ Sci Technol, vol. 48, pp. 3363-71, Mar 18 2014.
[46] C. H. Wu, W. H. Zhang, and B. S. Chen, "Multiobjective H-2/H-infinity synthetic gene network design based on promoter libraries," Mathematical Biosciences, vol. 233, pp. 111-125, Oct 2011.
[47] C. H. Wu, H. C. Lee, and B. S. Chen, "Robust synthetic gene network design via library-based search method," Bioinformatics, vol. 27, pp. 2700-2706, Oct 1 2011.
[48] Y. Y. Lee, C. Y. Hsu, L. J. Lin, C. C. Chang, H. C. Cheng, T. H. Yeh, et al., "Systematic design methodology for robust genetic transistors based on I/O specifications via promoter-RBS libraries," Bmc Systems Biology, vol. 7, Oct 27 2013.
[49] B. Wang, M. Barahona, and M. Buck, "Engineering modular and tunable genetic amplifiers for scaling transcriptional signals in cascaded gene networks," Nucleic Acids Res, vol. 42, pp. 9484-92, Oct 1 2014.
[50] R. L. Martineau, V. Stout, and B. C. Towe, "Optical tracking of a stress-responsive gene amplifier applied to cell-based biosensing and the study of synthetic architectures," Biosens Bioelectron, vol. 25, pp. 1881-8, Apr 15 2010.
[51] G. J. Nistala, K. Wu, C. V. Rao, and K. D. Bhalerao, "A modular positive feedback-based gene amplifier," J Biol Eng, vol. 4, p. 4, 2010.
[52] J. Wang and C. Chen, "Biosorbents for heavy metals removal and their future," Biotechnol Adv, vol. 27, pp. 195-226, Mar-Apr 2009.
[53] J. He and J. P. Chen, "A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools," Bioresour Technol, vol. 160, pp. 67-78, May 2014.
[54] W. C. Kao, C. C. Huang, and J. S. Chang, "Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia coli," J Hazard Mater, vol. 158, pp. 100-6, Oct 1 2008.
[55] X. Liu, C. Qi, T. Bing, X. Cheng, and D. Shangguan, "Specific mercury(II) adsorption by thymine-based sorbent," Talanta, vol. 78, pp. 253-8, Apr 15 2009.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *