帳號:guest(3.142.166.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳柏叡
作者(外文):Wu, Po-Jui
論文名稱(中文):模擬內側橄欖耳蝸之遮蔽與去遮蔽效應
論文名稱(外文):Simulating Masking and Anti-masking Effects of the Medial Olivocochlear Efferent Reflex
指導教授(中文):劉奕汶
指導教授(外文):Liu, Yi-Wen
口試委員(中文):李沛群
冀泰石
口試委員(外文):Pei-Chun Li
Tai-Shih Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061542
出版年(民國):103
畢業學年度:103
語文別:英文
論文頁數:55
中文關鍵詞:聽覺系統遮蔽效應去遮蔽效應內側橄欖耳蝸核垂直細胞
外文關鍵詞:auditory systemmaskinganti-maskingmedial olivocochleatuberculoventral cellvertical cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:663
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
聲音的遮蔽效應發生在當背景雜訊干擾目標聲音的判斷時。本論文將藉由設計持續的雜音加上較短的音調為聲音輸入,並將此導入現有之聲學模型中,此聲學模型包含中耳、耳蝸的流體力學模型、外毛細胞、內毛細胞、聽覺神經、T型多極細胞,並以此模型模擬遮蔽效應。接著提出內側橄欖耳蝸反射之模型,並模擬去遮蔽效應。去遮蔽效應為將遮蔽效應減弱的機制,有助於聽覺辨識。本內側耳蝸橄欖迴路建立的機制參考生物實驗的外毛細胞實驗結果:將乙醯膽鹼此神經傳遞值施用於外毛細胞上,會使外毛細胞的電導上升。本模型以內側橄欖耳蝸接受刺激後增加外毛細胞的電導,減少外毛細胞的放大作用,達到去遮蔽現象。接著提出垂直細胞膜型,並觀察此模型對去如何影響遮蔽效應。垂直細胞位於背側耳蝸核,抑制位於附側耳蝸核的T型多極細胞,本垂直細胞模型以增加T型多極細胞被觸發的閾值方式模擬被抑制的機制。垂直細胞有一特性:對於雜訊的反應較小。因此垂直細胞模型加入側抑制以模擬此現象。最後設計另一組持續音調在持續雜音中為聲音輸入,並再次模擬遮蔽與去遮蔽效應。
The masking effect happens when the background noise influences the target sound, which is then difficult to be perceived. To simulated this effect, we constructed a tone-burst-in-noise stimulus, and then fed into the model comprised of middle ear, cochlear membrane-fluid system, outer hair cell (OHC), inner hair cell (IHC), auditory nerve (AN), T-multipolar (TM) cell. This model successfully simulated the masking effect especially in low-level region. The medial olivocochlear reflex (MOCR), a descending auditory pathway, induces the anti-masking effect to reduce the masking effect and help human to perceive sounds. Based on an experiment of the OHC which showed the conductance of OHC was increased after applying acetylcholine (ACh), we have constructed the MOC model by changing the conductance of OHC and simulated the anti-masking effect. The tuberculoventral (TUB) cell is an inhibitory interneuron in dorsal cochlear nucleus (DCN) and projects to the ventral cochlear nucleus (VCN). The TUB inhibits the interneuron in VCN, and is sensitive to tones, while not to noise. We have used these two properties to construct a TUB model and enhance the anti-masking effect in sustained tone-in-noise conditions.
Abstract i
Acknowledgements ii
Contents iii
List of Figures v
List of Tables vi
Abbreviations vii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 What is a Biophysical Model? . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Liu and Neely Model [1][2] - Middle Ear, Basilar Membrane, and
Outer Hair Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Sumner et al. Model [3] - Inner Hair Cell and Auditory Nerve . . . 5
1.2.5 Hewitt et al. Model [4] - T-Multipolar Cell . . . . . . . . . . . . . 5
1.2.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Peripheral Auditory System 7
2.1 Outer Ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Middle Ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Inner Ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Cochlear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Place Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Outer Hair Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 OHC Mechanoeletrical Transduction . . . . . . . . . . . . . . . . . 14
2.3.5 OHC Electromotility . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.6 State-space Formulation . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.7 Inner Hair Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.8 IHC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.8.1 IHC Receptor Potential . . . . . . . . . . . . . . . . . . . 17
2.3.8.2 Calcium Controlled Transmitter Release Function . . . . 19
Contents iv
2.3.8.3 Quantal and Probabilistic Model of Synaptic Adaptation 20
2.3.9 Auditory Nerve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Higher Auditory Pathway 22
3.1 Masking E ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Cochlear Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Dendrite Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Soma Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Anti-Masking E ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Experiment results of the article: Feedback Control of The Auditory
Periphery: Anti-masking E ects of Middle Ear Muscles VS.
Olivocochlear E erents [5] . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Construction of an MOC Model to Simulate the Anti-masking E ect 32
3.3.3 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 The Tuberculoventral Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Construction of a TUB Model . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Inhibiting the TM interneuron in the VCN . . . . . . . . . . . . . 38
3.4.3 Lateral Inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Simulate Sustained Tone-in-Noise Condition . . . . . . . . . . . . . . . . . 40
3.5.1 Stimulus Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4 Conclusion 43
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A Parameters 45
B State-space Formulation of Liu and Neely Model 49
B.1 Equation (2.19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.2 Equation (2.22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.3 Equation (2.21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.4 Equation (2.20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Bibliography 52
[1] Y.-W. Liu and S. T. Neely, \Outer hair cell electromechanical properties in a nonlinear
piezoelectric model.," The Journal of the Acoustical Society of America, vol. 126,
pp. 751{761, Aug. 2009.
[2] Y.-W. Liu and S. T. Neely, \Distortion product emissions from a cochlear model
with nonlinear mechanoelectrical transduction in outer hair cells.," The Journal of
the Acoustical Society of America, vol. 127, pp. 2420{2432, Apr. 2010.
[3] C. J. Sumner, E. A. Lopez-Poveda, L. P. O'Mard, and R. Meddis, \A revised model
of the inner-hair cell and auditory-nerve complex.," The Journal of the Acoustical
Society of America, vol. 111, pp. 2178{2188, May 2002.
[4] M. J. Hewitt, R. Meddis, and T. M. Shackleton, \A computer model of a cochlearnucleus
stellate cell: responses to amplitude-modulated and pure-tone stimuli.,"
The Journal of the Acoustical Society of America, vol. 91, pp. 2096{2109, Apr.
1992.
[5] M. C. Liberman and J. J. Guinan, \Feedback control of the auditory periphery:
anti-masking e ects of middle ear muscles vs. olivocochlear e erents.," Journal of
communication disorders, vol. 31, no. 6, 1998.
[6] L. R. Squire, Chap. 26 Audition, ch. 26. Elsevier / Academic Press, 3 ed., Feb.
2008.
[7] E. D. Young and D. Oertel, Chap. 4 The cochlear nucleus, vol. 5, ch. Introduction
to Synaptic Circuits. Oxford University Press, 2004.
[8] G. D. Housley and J. F. Ashmore, \Direct measurement of the action of acetylcholine
on isolated outer hair cells of the guinea pig cochlea," Proceedings: Biological
Sciences, vol. 244, pp. 161{167, May 1991.
52
Bibliography 53
[9] G. A. Spirou, K. A. Davis, I. Nelken, and E. D. Young, \Spectral integration by
type II interneurons in dorsal cochlear nucleus.," Journal of neurophysiology, vol. 82,
pp. 648{663, Aug. 1999.
[10] L.-M. Yu, \Establishing a biophysical auditory model from middle ear to brainstem
and simulating the unmasking response of cochlea by delayed, frequency speci c
tuberculoventral inhibition," Master's thesis, National Tsing Hua University, July
2012.
[11] T. Kawase, B. Delgutte, and M. C. Liberman, \Antimasking e ects of the olivocochlear
re
ex. II. enhancement of auditory-nerve response to masked tones.," Jour-
nal of neurophysiology, vol. 70, pp. 2533{2549, Dec. 1993.
[12] A. Chintanpalli, S. G. Jennings, M. G. Heinz, and E. A. Strickland, \Modeling the
anti-masking e ects of the olivocochlear re
ex in auditory nerve responses to tones
in sustained noise.," Journal of the Association for Research in Otolaryngology :
JARO, vol. 13, pp. 219{235, Apr. 2012.
[13] A. L. Hodgkin and A. F. Huxley, \A quantitative description of membrane current
and its application to conduction and excitation in nerve.," The Journal of
physiology, vol. 117, pp. 500{544, Aug. 1952.
[14] J. Matthews, \Modeling reverse middle ear transmission of acoustic distortion signals,"
in Mechanics of Hearing (E. de Boer and M. A. Viergever, eds.), pp. 11{18+,
Springer Netherlands, 1983.
[15] R. Meddis, L. P. O'Mard, and E. A. Lopez-Poveda, \A computational algorithm for
computing nonlinear auditory frequency selectivity.," The Journal of the Acoustical
Society of America, vol. 109, pp. 2852{2861, June 2001.
[16] R. Meddis, \Simulation of mechanical to neural transduction in the auditory receptor.,"
The Journal of the Acoustical Society of America, vol. 79, pp. 702{711, Mar.
1986.
[17] T. A. Ghanem, K. D. Breneman, R. D. Rabbitt, and H. M. Brown, \Ionic composition
of endolymph and perilymph in the inner ear of the oyster toad sh, opsanus
tau.," The Biological bulletin, vol. 214, pp. 83{90, Feb. 2008.
[18] S. A. Shamma, R. S. Chadwick, W. J. Wilbur, K. A. Morrish, and J. Rinzel,
\A biophysical model of cochlear processing: intensity dependence of pure tone
responses.," The Journal of the Acoustical Society of America, vol. 80, pp. 133{145,
July 1986.
[19] D. C. Mountain and A. E. Hubbard, \Computational analysis of hair cell and
auditory nerve processes," in Auditory Computation (H. Hawkins, T. McMullen,
A. Popper, and R. Fay, eds.), vol. 6 of Springer Handbook of Auditory Research,
pp. 121{156+, Springer New York, 1996.
[20] A. J. Hudspeth and R. S. Lewis, \Kinetic analysis of voltage- and ion-dependent
conductances in saccular hair cells of the bull-frog, rana catesbeiana.," The Journal
of physiology, vol. 400, pp. 237{274, June 1988.
[21] R. C. Kidd and T. F. Weiss, \Mechanisms that degrade timing information in the
cochlea.," Hearing research, vol. 49, pp. 181{207, Nov. 1990.
[22] G. J. Augustine, M. P. Charlton, and S. J. Smith, \Calcium entry and transmitter
release at voltage-clamped nerve terminals of squid.," The Journal of physiology,
vol. 367, pp. 163{181, Oct. 1985.
[23] J. H. Siegel, \Spontaneous synaptic potentials from a erent terminals in the guinea
pig cochlea.," Hearing research, vol. 59, pp. 85{92, Apr. 1992.
[24] M. R. Schroeder, B. S. Atal, and J. L. Hall, \Optimizing digital speech coders by
exploiting masking properties of the human ear," The Journal of the Acoustical
Society of America, vol. 66, pp. 1647{1652, Dec. 1979.
[25] E. Zwicker and H. Fastl, Psychoacoustics: Facts and Models (Springer Series in
Information Sciences) (v. 22). Springer, 2nd updated ed. ed., Apr. 1999.
[26] N. B. Cant, \The ne structure of two types of stellate cells in the anterior division
of the anteroventral cochlear nucleus of the cat.," Neuroscience, vol. 6, no. 12,
pp. 2643{2655, 1981.
[27] W. S. Rhode and P. H. Smith, \Encoding timing and intensity in the ventral
cochlear nucleus of the cat.," Journal of neurophysiology, vol. 56, pp. 261{286,
Aug. 1986.
[28] W. Rall, \Cable theory for dendritic neurons," in Methods in Neuronal Modeling
(C. Koch and I. Segev, eds.), ch. Cable Theory for Dendritic Neurons, pp. 9{92,
Cambridge, MA, USA: MIT Press, 1989.
[29] J. J. Guinan, \Olivocochlear e erents: anatomy, physiology, function, and the measurement
of e erent e ects in humans.," Ear and hearing, vol. 27, pp. 589{607, Dec.
2006.
[30] D. E. Vetter, M. C. Liberman, J. Mann, J. Barhanin, J. Boulter, M. C. Brown,
J. Saote-Kolman, S. F. Heinemann, and A. B. Elgoyhen, \Role of 9 nicotinic ACh
receptor subunits in the development and function of cochlear e erent innervation,"
Neuron, vol. 23, pp. 93{103, May 1999.
[31] J. J. Guinan, \Physiology of olivocochlear e erents," in The Cochlea (P. Dallos,
A. Popper, and R. Fay, eds.), vol. 8 of Springer Handbook of Auditory Research,
pp. 435{502+, Springer New York, 1996.
[32] D. Oertel, S. Wright, X.-J. J. Cao, M. Ferragamo, and R. Bal, \The multiple
functions of t stellate/multipolar/chopper cells in the ventral cochlear nucleus.,"
Hearing research, vol. 276, pp. 61{69, June 2011.
[33] R. E. Wickesberg and D. Oertel, \Delayed, frequency-speci c inhibition in the
cochlear nuclei of mice: a mechanism for monaural echo suppression.," The Jour-
nal of neuroscience : the ocial journal of the Society for Neuroscience, vol. 10,
pp. 1762{1768, June 1990.
[34] S. L. Macknik and S. Martinez-Conde, Lateral Inhibition, ch. 3, pp. 523{525. Sage
Publications, 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *