帳號:guest(3.142.196.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林竣茂
作者(外文):Lin, Chun Mao
論文名稱(中文):用於光學解析度光聲顯微術基於蝶狀搜尋之二維流速估計: 實驗研究
論文名稱(外文):Butterfly Search Based 2D Flow Estimation for Optical Resolution Photoacoustic Microscopy: Experimental Study
指導教授(中文):李夢麟
指導教授(外文):Meng, Lin li
口試委員(中文):鐘太郎
陳之碩
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061529
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:45
中文關鍵詞:血流流速估計
外文關鍵詞:optical resolution photoacoustic microscopy, flow estimation, butterfly search
相關次數:
  • 推薦推薦:0
  • 點閱點閱:197
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
光學解析度光聲顯微鏡在橫向上有較高的解析度與安全性,因此被廣泛的使用在功能性影像上,對於醫學研究上也有極大的發展性。近期,微血管內的血流流速估計也引起廣大的興趣。在本文中,根據光聲訊號寬頻且無中心頻率的特性,我們參考超音波以寬頻量測血流流速的蝴蝶演算法,經過修正,提出一套新的方式來量測光聲訊號的流速,可以同時估計軸向與橫向的流速資訊,在考慮雜訊的情況下,可以在光聲訊號的血流資料中找到一條變異數最小的直線,其斜率為軸向的流速。此外,不同於傳統測量流速橫向流速的最大振幅投影方法,透過最佳蝶狀線的資料,進而得到橫向的流速資訊。文中,透過光學解析度光聲訊號的M- mode模擬模型 來驗證我們的演算法,且與過去主要用來估算橫向與軸向的演算法做比較。 可以發現比起傳統的方法,我們的方法在抗雜訊上有較好的表現,實驗結果也顯示,我們所提出的演算法是可行的。
Photoacoustic (PA) microscopy has been widely used in functional imaging. Because of the safety and high resolution, it has great potential for biomedical study. Recently, there is growing interest in flow estimation in vivo down to capillary level. In this study, according to the characteristics of optical resolution photoacoustic microscopy (ORPAM) flow signals, e.g., wideband and no carrier frequency, we propose a novel ORPAM flow estimation algorithm using the butterfly search technique which allows the simultaneous estimation of both axial flow velocity and lateral flow rate. Taking the presence of noise into account, the slope of the butterfly line over the PA flow data set having the minimum variance indicates the axial flow velocity. In addition, instead of the maximum amplitude projection (MAP) of the flow data set, the flow data along the selected butterfly line can be used to estimate lateral flow rate simultaneously. Here, the feasibility of the proposed method is verified via the M-mode simulation based on an OR-PAM photoacoustic signal model, and the performance of the proposed method is compared with that of the conventional single axis flow estimators. It is found that our method shows better noise immunity than the conventional methods. The experimental results also show that our method is feasible.
摘要 I
Abstract I
Table of Contents II
List of Figures………………………………………………………………………...V
List of Tables……………………………………………………………………… ....X
Chapter 1 Introduction 1
1.1 Optical Resolution Photoacoustic Microscopy…………………………...1
1.2 Blood Flow Mearsurement 1
1.3 Conventional Method 2
1.4 Motivation 5
1.5 Composition of the thesis 6
Chapter 2 Materials and Methods 7
2.1 Modified Butterfly Search Algorithm 7
2.2 Axial Flow Estimation 9
2.2.1 Selection of ROI & Line by Line Normalization 10
2.2.2 Initial Guess 11
2.2.3 Butterfly Search 12
2.3 Lateral Flow Estimation 13
2.3.1 Proposed Method 14
2.3.2 Autocorrelation 16
Chapter 3 Results and Discussion 18
3.1 Simulations 18
3.1.1 Laser Beam………………………………………………………...18
3.1.2 N shape…..………………………………………………………...20
3.1.3 Spatial Impulse Response………………………………….……....21
3.1.4 Electrical Impulse Response…………………………….………...21
3.1.5 Hypothesis…………………………………………………………22
3.2 Simulation Results 23
3.3 Experiment 30
3.3.1 System Architectures and Specifications 30
3.3.2 Experimental Results 32
Chapter 4 Conclusions and Future Work 40
4.1 Conclusions 40
4.2 Future Work 41
References 42
[1] Jianhua Chen, Riqiang Lin, Huina Wang, Jing Meng, Hairong Zheng, and Liang Song, “Blind-deconvolution Optical-resolution Photoacoustic Microscopy in Vivo,” Optics express 21(6), 7316-7327 (2013).
[2] Hao F Zhang, Konstantin Maslov, George Stoica, and Lihong V Wang, "Functional photoacoustic Microscopy for High-resolution and Noninvasive in Vivo Imaging," Nature biotechnology 24(7), 848-851 (2006).
[3] Konstantin Maslov, Hao F. Zhang, Song Hu, and Lihong V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929-931 (2008).
[4] Chi Zhang, Konstantin Maslov, and Lihong V. Wang, “Subwavelength-resolution Label-free Photoacoustic Microscopy of Optical Absorption in Vivo,” Optics letters 35(19), 3195-3197 (2010).
[5] Chi Zhang, Konstantin Maslov, Song Hu, Ruimin Chen, Qifa Zhou, K.Kirk Shung, and Lihong V. Wang, “Reflection-mode Submicron-resolution in Vivo Photoacoustic Microscopy,” Journal of biomedical optics 17(2), 0205011-0205014 (2012).

[6] Iadecola,C.(2004).Neurovascular regulation in the normal brain and in Alzheimer's disease. Nature Reviews Neuroscience, 5(5), 347-360
[5] Fang, H., & Wang, L. V. (2009)., M-mode photoacoustic particle flow .imaging. Optics letters, 34(5), 671-673.
[6] Song, W., Liu, W., & Zhang, H. F. (2013). Laser-scanning Doppler photoacoustic microscopy based on temporal correlation. Applied physics letters, 102(20), 203501.
[7] Chen, S. L., Xie, Z., Carson, P. L., Wang, X., & Guo, L. J. (2012, February). Photoacoustic correlation spectroscopy for in vivo blood flow speed measurement. In SPIE BiOS (pp. 82230O-82230O). International Society for Optics and Photonics.
[8] J. Brunker, P. Beard, Pulsed photoacoustic Doppler flowmetry using timedomain cross-correlation: accuracy, resolution and scalability, J. Acoust. Soc. Am. 132 (3) (2012) 1780–1791.
[9] W. Song, W. Liu, H.F. Zhang, Laser-scanning Doppler Photoacoustic microscopy based on temporal correlation, Applied Physics Letters 102 (20) (2013).

[10] J.Y.Liang, Y. Zhou, K.I. Maslov, L.H.V. Wang, Cross-correlation-based Transverse flow measurements using optical resolution photoacoustic microscopy with a digital micromirror device, J Biomed Opt 18 (9) (2013).

[11] S.L. Chen, Z.X. Xie, P.L. Carson, X.D. Wang, L.J. Guo, In Vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy, Opt Lett 36 (20) (2011) 4017–4019.
[12] J.Yao, K.I. Maslov, Y. Shi, L.A. Taber, L.V. Wang, In Vivo photoacoustic imaging of transverse blood flow by using Doppler Broadening of bandwidth, Opt. Lett. 35 (9) (2010).
[13] J. Yao, L.V. Wang, Transverse flow imaging based on photoacoustic Doppler Bandwidth broadening, J Biomed Opt 15 (2) (2010) 021304.
[14] Alam, S. K., & Parker, K. J. (1995). The butterfly search technique for estimation of blood velocity. Ultrasound in medicine & biology, 21(5), 657-670.
[15] Chen, S. L., Xie, Z., Carson, P. L., Wang, X., & Guo, L. J.(2012, February). Photoacoustic correlation spectroscopy for in vivo blood flow speed measurement. In SPIE BiOS (pp. 82230O-82230O). International Society for Optics and Photonics.
[16] S.L. Chen, T. Ling, S.W. Huang, H.W. Baac, L.J. Guo, Photoacoustic Correlation spectroscopy and its application to low-speed flow measurement, Opt Lett 35 (8) (2010) 1200–1202.
[17] Viator, J. A., Jacques, S. L., & Prahl, S. A. (1999). Depth profiling of absorbing soft materials using photoacoustic methods. Selected Topics in Quantum Electronics, IEEE Journal of, 5(4), 989-996.
[18] A.A. Oraevsky, S. L. Jacques, and F.K Tittle,(1995) “Mechansim of laser ablation for aqueous media irradiated under stress confined conditions,”J. Appl. Phys., vol. 78, pp. 1281-1289.
[19] http://omlc.org/spectra/hemoglobin/
[20] 孫斌瀚,& 李夢麟. (2014).用於為血管脈絡造影光學解析度光聲顯微鏡影像系統之開發. 科儀新知,(198), 85-93.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *