帳號:guest(3.146.65.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李佳倫
作者(外文):Li, Jia Lun
論文名稱(中文):啟動子-核糖體結合位庫的建立與基因電路規格設計上的應用 於藍綠菌細胞 PCC 7942
論文名稱(外文):Construction of Promoter-RBS Libraries of the Cyanobacterium Synechococcus sp. PCC 7942 and Their Application to Systematic Synthetic Circuit Design to Match User-Oriented Specifications
指導教授(中文):陳博現
指導教授(外文):Chen, Bor Sen
口試委員(中文):蘭宜錚
沈若樸
口試委員(外文):Lan, Ethan I.
Shen, Roa Pu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061517
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:64
中文關鍵詞:藍綠菌啟動子-核糖體結合位庫細胞族群控制
外文關鍵詞:cyanobacteriapromoter-RBS librarycell population control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:197
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
至今在藍綠菌細胞中為了能夠系統化得設計基因電路,建立啟動子-核糖體的元件庫,以因應各種廣泛的應用仍是一件吸引人的事。在藍綠菌細胞 PCC 7942 中,為了能夠系統化得設計基因電路,我們建立了三種啟動子-核糖體結合位元件庫,即連續表現型、抑制子調控型及促進子調控型。將工程化基因電路轉殖到藍綠菌中,分別提供了這三種啟動子-核糖體結合位庫的建立流程圖,根據實驗中量測到啟動子-核糖體的強度和動態模型,啟動子-核糖體被視為一種特性組件,再來透過系統鑑別參數的技術將生物元件特性化,並且調控不同種類的生物組件,用於基因電路設計以符合在藍綠菌細胞中的期望行為。在藍綠菌細胞中,展現了設計的示範例子關於細胞族控制,說明了設計流程根據所提出的啟動子-核糖體搜尋方法,並且結合活體細胞做驗證。為了使設計更加方便,利用系統化方法來控制從元件庫中選擇出的核糖體元件強度,以滿足在藍綠菌細胞中的行為。因此我們相信所提出系統化的工程設計方法,能提供快速發展的合成生物領域,讓使用者能選擇最佳的元件以實現各種的應用。
At present, it is still appealing to have promoter-RBS libraries for systematic design of synthetic genetic circuit in Cyanobacteria for a variety of application. In the Cyanobacterium Synechococcus sp. strain PCC 7942, we set up three kinds of promoter-RBS libraries, i.e., constitutive, repressor-regulated and activator-regulated promoter-RBS libraries, for systemic design of synthetic gene circuits in Cyanobacteria. In order to engineer synthetic gene circuit into Cyanobacterium Synechococcus sp. PCC 7942, we provide the flow chart to constructing constitutive, repressor-regulated, and activator-regulated promoter-RBS libraries based on promoter-RBS intensities through experimental data, i.e., , , and , respectively. By the parameter identification technique based on dynamic model, a promoters-RBS is regarded as a characteristic part to be selected for gene circuit design with a desired behavior in Cyanobacteria, and regulated by different biological parts in blue-green algae. A design example with desired cell population control is given to illustrate the design procedure of synthetic circuit in Cyanobacteria by the proposed promoter-RBS library-search method and is validated by experimental data in vivo. For the convenience of design, we provide a systematic method for a genetic circuit to control part’s intensity to achieve some desired behavior in Cyanobacterium Synechococcus sp. PCC 7942. Consequently, we believe that the proposed library-based search method can help user select an adequate set of promoter-RBS parts to realize various kinds of application in rapidly developed synthetic biology.
摘要 i
Abstract ii
誌謝 iii
Content iv
List of Figures vii
List of Tables viii
Introduction 1
The flow chart of building Promoter-RBS Libraries for synthetic gene circuit in Cyanobacteria 5
2.1. Characteristic Indexes of Promoter-RBS libraries based on promoter-RBS intensity 5
2.2. Genetic engineering of Cyanobacteria 7
2.3. Dynamic model for protein expression of synthetic gene circuit in Cyanobacteria 9
2.4.The flow chart of building constitutive promoter-RBS libraries in Cyanobacteria
11
2.5. The flow chart of building repressor-regulated promoter-RBS libraries 13
2.6. The flow chart of building activator-regulated promoter-RBS libraries 18
Design of function gene circuit for cell population control in Synechococcus sp. PCC 7942 23
3.1. The introduction of Bacteriorhodopsin (BR) and cyanobacterial ictB gene 23
3.2. Dynamic model of control genetic circuit for cell population control of Cyanobacteria 25
3.3. Design specifications and procedure of population control genetic circuit for cell population control in Cyanobacteria 27
3.4. Validation of cell population control genetic circuit in Cyanobacteria 30

Discussion 32
Conclusion 35
Reference 36
Figures 41
Tables 56
Material and Method 61

[1] E. Andrianantoandro, S. Basu, D. K. Karig, and R. Weiss, "Synthetic biology: new engineering rules for an emerging discipline, " Mol Syst Biol, vol. 2, 2006.
[2] R. M. Luuc, M. S. Olav , and H. Utkilen , " Cyanobacteria in the environment, " In Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management, Edited by: I. Chorus, and J. Bartram, pp. 15-40, 1999.
[3] S. A. Angermayr, K. J. Hellingwerf, P. Lindblad , and M. J. T. Mattos, "Energy biotechnology with cyanobacteria, " Current Opinion in Biotechnology, vol. 20, pp. 257-263, 2009.
[4] R. Y. StaIJier and G. Cohen-Bazire, "Phototrophic prokaryotes: the cyanobacteria, " Annu Rev Microbiol, vol. 74, pp. 31-225, 1977.
[5] J. C. Kehr, D. G. Picchi, and E. Dittmann, "Natural product biosyntheses in cyanobacteria: a treasure trove of unique enzymes, " Beilstein J Org Chem, vol. 7, pp. 1622-1635, 2011.
[6] L. M. Lassen, A. Z. Nielsen, B. Ziersen, T. Gnanasekaran, B. L. Moller, and P. E. Jensen, "Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds, "ACS Synth. Biol, vol. 3, pp. 1-12, 2014.
[7] C. R. Shen and J. C. Liao, "Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase, " Energy Environ. Sci, vol. 5, pp. 9574-9583, 2012.
[8] S. A. Benner and A. M. Sismour, "Synthetic biology," Nature Reviews Genetics, vol. 6, pp. 533-543, 2005.
[9] E. L. Haseltine, and F. H. Arnold, "Synthetic gene circuits: design with directed evolution, " Annual review of biophysics and biomolecular structure, vol. 36, pp. 1-19, 2007.
[10] B. Canton, A. Labno, and D. Endy, “Refinement and standardization of synthetic biological parts and devices,” Nature biotechnology, vol. 26, no. 7, pp. 787-794, 2008.
[11] W. W. Gibbs, “Synthetic life,” Scientific American, vol. 290, no. 5, pp. 74-81, May, 2004.
[12] T. Ellis, X. Wang, and J. J. Collins, “Diversity-based, model-guided construction of synthetic gene circuits with predicted functions,” Nat Biotechnol, vol. 27, no. 5, pp. 465-71, May, 2009.
[13] A. E. Borujeni, A. S. Channarasappa, and H. M. Salis, "Translation rate is controlled by coupled trade-offs between siteaccessibility, selective RNA unfolding and sliding at upstream standbysites," Nucleic Acids Res, vol. 42, pp. 2646-2659, 2013.
[14] S. Imamura, and M. Asayama, "Sigma Factors for Cyanobacterial Transcription," Gene Reg and Syst Biol, vol. 3, pp. 65-87, 2009.
[15] D. Camsund and P. Lindblad, "Engineered Transcriptional Systems for Cyanobacterial Biotechnology," Front Bioeng Biotechnol, vol. 2,pp. 40, 2014.
[16] S. Balzer, V. Kucharova, J. Megerle, R. Lale, T. Brautaset, and S. Valla, " A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli," Microb. Cell Fact, pp. 12-26, 2013.
[17] RL. Vellanoweth and JC. Rabinowitz," The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo," Mol Microbiol, vol. 6, pp.1105-1114, 1992.
[18] K. Hammer, I. Mijakovic, and P. R. Jensen, "Synthetic promoter libraries – tuning of gene expression," Trends in Biotechnology, vol. 24, pp. 53-55, 2006.
[19] M. D. Marjan, M. Jo, L. J. Gaspard, S. K. Wim ,and V. J. Erick, "Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering, " BMC Biotechnology, vol. 7, pp.34-48, 2007.
[20] K. A. Curran, N. C. Crook, A. S.Karim, A. Gupta, A.M. Wagman, and H. S. Alper, "Design of synthetic yeast promoters viatuning of nucleosome architecture," Nat. Commun, vol. 5, pp. 4002, 2014.
[21] I. Rud, P. R. Jensen, K. Naterstad, and L. Axelsson, "A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum, " Microbiology, vol. 152, pp. 1011-1019, 2006.
[22] S. Balzer, V. Kucharova, J. Megerle, R. Lale, T. Brautaset, and S. Valla, "A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli, "Microbial Cell Factories, vol. 12, pp. 26, 2013.
[23] J. Zhang, F. Varas, M. Stadtfeld, S. Heck, N. Faust, and T. Graf, "CD41-YFP mice allow in vivo labeling of megakaryocytic cells and reveal a subset of platelets hyperreactive to thrombin stimulation," Exp. Hematol., vol. 35, pp. 490-499, 2007.
[24] J. H. J. Leveau and S. E. Lindow, "Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria," J. Bacteriol, vol. 183, pp. 6752-6762, 2001.
[25] R. Johansson, "System modeling & identification," 1993.
[26] S. Maeda, G. D. Price, M. R .Badger, C. Enomoto, and T. Omata, "Bicarbonate binding activity of the CmpA protein of the cyanobacterium Synechococcus sp. strain PCC 7942 involved in active transport of bicarbonate," J. Biol. Chem. ,vol. 275, pp. 20551-20555, 2000.
[27] T. Omata, S. Gohta, Y. Takahashi, Y. Harano, and S. Maeda, "Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria," J. Bacteriol ,vol. 183, pp. 1891-1898, 2001.
[28] P. H. Chen, H. L. Liu, Y. J. Chen, Y. H. Cheng, W. L. Lin,.C. H. Yeha and C. H. Chang, "Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria," Energy Environ. Sci., vol. 5, pp. 8318-8327, 2012.
[29] K. A. Durham, D. Porta, R. M. McKay, and G. S. Bullerjahn, "Expression of the iron-responsive irpA gene from the cyanobacterium Synechococcus sp strain PCC 7942," Arch. Microbiol., vol. 179, pp. 131-134, 2003.
[30] S. Sandström, A. G. Ivanov, Y. I. Park, G. Öquist, and P. Gustafsson, "Iron stress responses in the cyanobacterium Synechococcus sp. PCC7942,"Physiol. Plant , vol. 116, pp. 255-263, 2002.
[31] T. Sakamoto, and D. A. Bryant, "Nitrate transport and not photoinhibition limits growth of the freshwater cyanobacterium Synechococcus species PCC 6301 at low temperature," Plant Physiol.,vol. 119, pp. 785-794, 1999.
[32] H. M. Lee, M. F. Vazquez-Bermudez, and N. T. de Marsac, "The global nitrogen regulator NtcA regulates transcription of the signal transducer PII (GlnB) and influences its phosphorylation level in response to nitrogen and carbon supplies in the cyanobacterium Synechococcus sp. strain PCC 7942, " J. Bacteriol., vol. 181, pp. 2697-2702, 1999.
[33] M. F. Vazquez-Bermudez, J. Paz-Yepes, A. Herrero, and E. Flores, "The NtcA-activated amt1 gene encodes a permease required for uptake of low concentrations of ammonium in the cyanobacterium Synechococcus sp. PCC 7942, " Microbiol., vol. 148, pp. 861-869, 2002.
[34] R. Schwarz, and A. R Grossman, "A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions, " Proc. Natl. Acad. Sci., vol. 95, pp. 11008- 11013, 1998.
[35] P. V. Sane, A. G. Ivanov, D. Sveshnikov, N. P. Huner, and G. Öquist, "A transient exchange of the photosystem II reaction center protein D1:1 with D1:2 during low temperature stress of Synechococcus sp. PCC 7942 in the light lowers the redox potential of QB,"J. Biol. Chem., vol. 277, pp. 32739-32745, 2002.
[36] M. Sarcina, M. J. Tobin, and C. W .Mullineaux, "Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942,"J. Biol. Chem., vol. 276, pp. 46830-46834, 2001.
[37] O. A. Koksharova, and C. P. Wolk, "Genetic tools for cyanobacteria, Appl., "Microbiol. Biothechnol., vol. 58, pp. 123-137, 2002.
[38] A. Koichi, M. Kotone, N. Mayumi, K. Katsuhiro, F. Stefano, I. Kazunori, and S. Koji, " Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803," Micro. Biotechnology, vol. 7, pp. 177-183, 2014.
[39] H. Huang, and P. Lindblad, "Wide-dynamic-range promoters engineered for cyanobacteria," Journal of Biol. Engineering, pp. 7-10, 2013.
[40] C. K. Holtman, Y. Chen, P. Sandoval, A. Gonzales, M. S. Nalty, T. L. Thomas, P. Youderian, and S. S. Golden, " High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome," DNA Res., vol 12, pp. 103-115, 2005.
[41] E. M. Clerico, J. L. Ditty, and S. S. Golden, "Specialized techniques for site-directed mutagenesis in cyanobacteria," Methods Mol Biol, vol. 362, pp. 155-171, 2007.
[42] L. H. Judy, R. Shimon, M. Ron, M. Yehouda, and K. Aaron, " Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3– accumulation in cyanobacteria," Plant Biot. Jour., pp. 43-50, 2010.
[43] L. K. Chu, C. W. Yen, and M. A. El-Sayed, " On the Mechanism of the Plasmonic Field Enhancement of the Solar-to-Electric Energy Conversion by the Other Photosynthetic System in Nature (Bacteriorhodopsin): Kinetic and Spectroscopic Study," J. Phys. Chem., pp. 15358-15363, 2010.
[44] V. P. Pankaj, and M. Awasthi, " Microalgae biofuel can be easy available source of energy," Inter. Jour. of Innovative Sci., Engineering & Technology, vol. 2, pp. 303-308, 2015.
[45] K. Ullaha, M. Ahmadb, Sofiaa, V. K. Sharmac, P. Lud, A. Harveye, M. Zafarb, S. Sultanab, and C. N. Anyanwuf, " Algal biomass as a global source of transport fuels: Overview and development perspectives," Natural Science: Materials Inter., vol. 24, pp. 329-339, 2014.
[46] R. Davis, A. Aden, and P. T. Pienkos, " Techno-economic analysis of autotrophic microalgae for fuel production," National Renewable Energy Laboratory, vol. 88, pp. 3524-3531, 2011.
[47] M. annon, J. Gimpel, M. Tran, B. Rasala, and S. Mayfield, " Biofuels from algae: challenges and potential," Biofuels., vol. 5 pp. 763-784, 2011.
[48] H. Alper, C. Fischer, E. Nevoigt et al., “Tuning genetic control through promoter engineering,” Proc Natl Acad Sci U S A, vol. 102, pp. 12678-12683, 2005.
[49] R. S. Cox, 3rd, M. G. Surette, and M. B. Elowitz, “Programming gene expression with combinatorial promoters,” Mol Syst Biol, vol. 3, pp. 145, 2007.
[50] J. Gertz, E. D. Siggia, and B. A. Cohen, “Analysis of combinatorial cis-regulation in synthetic and genomic promoters,” Nature, vol. 457, pp. 215-218, 2009.
[51] E. Segal, and J. Widom, “From DNA sequence to transcriptional behaviour: a quantitative approach,” Nat Rev Genet, vol. 10, pp. 443-456, 2009.
[52] A. Kinkhabwala, and C. C. Guet, “Uncovering cis regulatory codes using synthetic promoter shuffling,” PLoS One, vol. 3 , pp. e2030, 2008.
[53] H. M. Salis, E. A. Mirsky, and C. A. Voigt, “Automated design of synthetic ribosome binding sites to control protein expression,” Nature biotechnology, vol. 27, pp. 946-950, 2009.
[54] B. Canton, A. Labno, and D. Endy, “Refinement and standardization of synthetic biological parts and devices,” Nature biotechnology, vol. 26, pp. 787-794, 2008.
[55] B. S. Chen, and P. W. Chen, “GA-based Design Algorithms for the Robust Synthetic Genetic Oscillators with Prescribed Amplitude, Period and Phase,” Gene Regual and Syst. Bio., vol. 4, pp. 35-52, 2010.
[56] Y. Y. Lee, C. Y. Hsu, L. J. Lin, C. C. Chang, H. C. Cheng, T. H. Yeh, et al., "Systematic design methodology for robust genetic transistors based on I/O specifications via promoter-RBS libraries," Bmc Systems Biology, vol. 7, 2013.
[57] P. E. Purnick, and R. Weiss, “The second wave of synthetic biology: from modules to systems,” Nat Rev Mol Cell Biol, vol. 10, pp. 410-22, 2009.
[58] T. Mori, B. Binder, and C. H. Johnson, " Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours," Nat.l Acad. Sci. USA, vol. 93, pp. 10183-10188, 1996.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *