帳號:guest(3.149.28.126)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):丁珮仙
作者(外文):Ting, Pei-Hsien
論文名稱(中文):基於超快平面波成像之脈衝式磁致動超音波技術
論文名稱(外文):Ultrafast Plane Wave Imaging Based Pulsed Magnetomotive Ultrasound
指導教授(中文):李夢麟
指導教授(外文):Li, Meng-Lin
口試委員(中文):陳三元
王士豪
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061516
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:65
中文關鍵詞:磁致動超音波影像
外文關鍵詞:Magnetomotive Ultrasound
相關次數:
  • 推薦推薦:0
  • 點閱點閱:208
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
脈衝式磁致動超音波(pMMUS)為近年來發展用來監測超順磁性氧化鐵奈米粒子(SPIO Nanoparticles)的新式超音波成像技術,實現了傳統超音波影像無法觀測超順磁性氧化鐵奈米粒子的問題。但因磁脈衝的限制,目前技術通常僅能使用單一探頭搭配機械掃描方式進行成像,其成像速度大幅受限,不適合臨床使用。在本研究中我們提出了基於超快平面波成像之脈衝式磁致動超音波影像技術來解決此問題。利用僅需單一發射次數的平面波超快成像技術解決傳統陣列成像無法在磁脈衝產生時完成造影的問題。如此快速的成像可以在短磁脈衝下偵測超順磁性氧化鐵奈米粒子受到磁場作用產生振動的動態變化情形。此動態變化情形有機會反應組織的特性,像是組織彈性(elasticity)及黏滯程度(viscosity)。此外,我們亦提出一個新的脈衝式磁致動超音波影像運動追蹤(motion tracking)演算法來降低磁場強度分布不均勻的影響。實驗中我們以5 kHz幀率的超快平面波成像來實現脈衝式磁致動超音波,以其來追蹤在8 ms磁脈衝下所導致超順磁性氧化鐵奈米粒子的振動。實驗確認了在有無加入超順磁性氧化鐵奈米粒子仿體的超快平面波磁致動超音波影像上可以發現有明顯差異。其偵測到的位移量會隨著超順磁性氧化鐵奈米粒子濃度增加而呈現上升趨勢。此外,我們亦製作0.5%、1%及1.5%不同比例瓊脂膠體仿體來仿效不同彈性的組織。在這三組仿體上,可觀察到其超順磁性氧化鐵奈米粒子的動態變化曲線有明顯的差異。整體而言,驗證了我們所提出的超快磁致動超音波影像技術搭配磁脈衝用於觀測超順磁性氧化鐵奈米粒子分布及超順磁性氧化鐵奈米粒子的動態變化情形之可行性。未來將進一步改善運動追蹤的演算法以及更進一步探討組織彈性及黏滯程度和超順磁性氧化鐵奈米粒子動態變化之間的關係。
Recently, pulsed magnetomotive ultrasound (pMMUS) imaging has been introduced to detect superparamagnetic iron oxide nanoparticles (SPIO) which is not able to be visualized by conventional ultrasound. However, because of the used magnetic short pulse, the reported pMMUS only can use a single-element ultrasound transducer along with mechanical scanning to perform imaging, which significantly limits the imaging fame rates. To solve this problem, we propose an ultrafast plane wave imaging based pMMUS technique. The ultrafast frame rate of plane wave imaging is fast enough to track the magneto-motion of the excited SPIOs during the period of the magnetic pulse being applied. Therefore, the proposed ultrafast plane wave pMMUS is capable of visualizing the dynamic response of the excited SPIOs, which is highly correlated to tissue characteristics such as viscosity and elasticity, to an externally-applied magnetic pulse. In addition, a new pMMUS motion tracking algorithm based on ultrafast plane wave imaging is developed to reduce the effect of magnetic field inhomogeneity. In our experiments, ultrafast plane wave imaging with a 5 kHz frame rate was used to implement the pMMUS where the SPIO motion induced by an 8-ms magnetic pulse was tracked. The results showed that there were significant differences between the ultrafast plane wave pMMUS images of the phantoms with and without SPIOs embedded. There was a monotonic increase in displacement with increased concentration of SPIOs. In addition, agarose phantoms with 0.5%, 1% and 1.5% agarose were used to mimic tissues with different elasticity. The dynamic responses of the excited SPIOs in the three types of phantoms were distinguishable. Overall, it is demonstrated that the feasibility of our proposed ultrafast plane wave pMMUS imaging technique for the visualization of the magneto-motion and dynamic response of the SPIOs under the excitation of a short magnetic pulse. More studies are required to further improve the magneto-motion tracking algorithm and explore the relationship between the dynamic response of the excited SPIOs and the tissue viscosity and elasticity.
中文摘要 I
Abstract III
誌謝 IV
目錄 VII
圖目錄 X
第一章 緒論 1
1.1 磁性材料之特性 1
1.2 超順磁性氧化鐵奈米粒子 4
1.2.1 超順磁性氧化鐵奈米粒子生醫上之應用 5
1.2.1.1 超順磁性氧化鐵奈米粒子作為影像對比劑 6
1.2.1.2 熱治療 7
1.2.1.3 藥物遞送 8
1.2.1.4 磁分離 9
1.2.2 超音波監測超順磁性氧化鐵奈米粒子的限制 10
1.3 磁致動超音波影像 11
1.3.1 磁致動超音波影像基本原理 11
1.3.2 磁致動力 13
1.3.3 影響磁致動力參數之探討 15
1.3.4 超音波影像用於偵測組織位移量 16
1.4 研究動機與目的 18
1.5 論文架構 19
第二章 材料與方法 21
2.1 基於超快平面波成像之脈衝式磁致動超音波技術 21
2.1.1 脈衝式磁場 21
2.1.2 超快平面波成像 27
2.1.3 超順磁性氧化鐵奈米粒子製作方式 31
2.1.4 超快平面波磁致動超音波系統及實驗架構 32
2.1.5 實驗資料擷取流程 35
2.1.6 超順磁性氧化鐵奈米粒子之追蹤 37
2.1.7 降低磁場強度不均勻性之演算方法 40
2.1.8 實驗仿體 42
第三章 實驗結果與討論 44
3.1 仿體實驗 44
3.1.1 不同超順磁性氧化鐵奈米粒子濃度仿體的超音波B-mode影像 44
3.1.2 不同超順磁性氧化鐵奈米粒子濃度仿體的超快平面波磁致動超音波影像 45
3.1.3 超順磁性氧化鐵奈米粒子濃度與位移量強度關係 48
3.1.4 不同軟硬度仿體的超音波B-mode影像 49
3.1.5 不同軟硬度仿體的超快平面波磁致動超音波影像 51
3.1.6 仿體彈性係數與位移量大小關係 53
3.1.7 仿體軟硬度超順磁性氧化鐵奈米粒子動態變化曲線關係 54
3.1.8 降低磁場強度不均勻性 56
第四章 結論與未來工作 59
4.1 結論 59
4.2 未來工作 59
參考文獻 62
http://highscope.ch.ntu.edu.tw/wordpress/?p=1629

R. Weissleder, "Molecular Imaging: Exploring the Next Frontier1," Radiology, vol. 212, pp. 609-614, 1999.

http://www.ch.ntu.edu.tw/~htchang/index.files/Research%20interests/
Magnetic%20Nanoparticles(items).htm

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. R.Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Molecular imaging, vol. 2, p. 324, 2003.

N. Nitin, L. LaConte, O. Zurkiya, X. Hu, and G. Bao, "Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent," Journal of Biological Inorganic Chemistry, vol. 9, pp. 706-712, 2004.

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, "Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy," Cancer gene therapy, vol. 8, p. 649, 2001.

M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. Waldöfner, R. Scholz, S. Deger, P. Wust, S. Loening, and A. Jordan, "Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique," International journal of hyperthermia, vol. 21, pp. 637-647, 2005.

M. Arruebo, R. Fernandez-Pacheco, M. R. Ibarra, and J. Santamara, "Magnetic nanoparticles for drug delivery," Nano Today, vol. 2, pp. 22-32, 2007.

C. Sun, J. S. H. Lee, and M. Zhang, "Magnetic nanoparticles in MR imaging and drug delivery," Advanced Drug Delivery Reviews, vol. 60, pp. 1252-1265, 2008.

M. Lewin, N. Carlesso, C. H. Tung, X. W. Tang, D. Cory, D. T. Scadden, and R. Weissleder, "Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells," Nature biotechnology, vol. 18, pp. 410-414, 2000.

K. E. McCloskey, J. J. Chalmers, and M. Zborowski, "Magnetic cell separation: characterization of magnetophoretic mobility," Analytical chemistry, vol. 75, pp. 6868-6874, 2003.

Li W, Tutton S, Vu AT, Pierchala L, Li BS, Lewis JM, Prasad PV, Edelman RR, “First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent,” Journal of magnetic resonance imaging, vol. 21, pp. 46-52, 2005.

McLachlan SJ, Morris MR, Lucas MA, Fisco RA, Eakins MN, Fowler DR, Scheetz RB, Olukotun AY, “Phase I clinical evaluation of a new iron oxide MR contrast agent,” Journal of magnetic resonance imaging, vol. 4, pp. 301-307, 1994.

L. Neel, "Some theoretical aspects of rock-magnetism," Advances in physics, vol. 4, pp. 191-243, 1955.

R. Hergt, R. Hiergeist, I. Hilger, W. Kaiser, Y. Lapatnikov, S. Margel, and U. Richter, "Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia," Journal of Magnetism and Magnetic Materials, vol. 270, pp. 345-357, 2004.

J. Dobson, "Magnetic nanoparticles for drug delivery," Drug development research, vol. 67, pp. 55-60, 2006.

S. C. McBain, H. H. P. Yiu, and J. Dobson, "Magnetic nanoparticles for gene and drug delivery," International journal of nanomedicine, vol. 3, p. 169, 2008.

T. J. Yoon, J. S. Kim, B. G. Kim, K. N. Yu, M. H. Cho, and J. K. Lee,
"Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery," Angewandte Chemie, vol. 117, pp. 1092-1095, 2005.

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, "Medical application of functionalized magnetic nanoparticles," Journal of bioscience and
bioengineering, vol. 100, pp. 1-11, 2005.

Pankhurst, QA, Connolly, J, Jones, SK, Dobson, ” Applications of magnetic nanoparticles in biomedicine,” J PHYS D APPL PHYS , vol. 36, pp. 167-181, 2003.

Mehrmohammadi M, Oh J, Mallidi S, Emelianov SY, “Pulsed magneto-motive ultrasound imaging using ultrasmall magnetic nanoprobes,” Molecular imaging, vol. 10, pp. 102-110, 2011.

M Mehrmohammadi, K Y Yoon, M Qu, K P Johnston, S Y Emelianov, “Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters,” Nanotechnology, vol. 22, pp. 045502, 2011.

N. A. Cohn, S. Y. Emelianov, M. A. Lubinski, and M. O'Donnell, "An elasticity microscope. Part I: methods," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 44, pp. 1304-1319, 1997.

M. A. Lubinski, S. Y. Emelianov, and M. O'Donnell, "Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 46, pp. 82-96, 1999.

S. Park, S. R. Aglyamov, W. G. Scott, and S. Y. Emelianov, "Strain imaging using conventional and ultrafast ultrasound imaging: Numerical analysis," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 54, pp. 987-995, 2007.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. R. Spooner, T. Juhasz, R. M. Kurtz, and M. O'Donnell, "Strain imaging of corneal tissue with an ultrasound elasticity microscope," Cornea, vol. 21, p. 68, 2002.

G. F. Pinton, J. J. Dahl, and G. E. Trahey, "Rapid tracking of small displacements with ultrasound," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 53, pp. 1103-1117, 2006.

A. Skovoroda, S. Emelianov, and M. O'Donnell, "Tissue elasticity reconstruction based on ultrasonic displacement and strain images," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 42, pp. 747-765, 1995.

http://en.wikipedia.org/wiki/Sum_of_absolute_differences

Mehrmohammadi, M., Univ. of Texas at Austin, Austin, Oh, J., Ma, L., Yantsen, E., “Imaging of Iron Oxide Nanoparticles Using Magneto-Motive Ultrasound,” Ultrasonics Symposium, IEEE, pp. 652-655, 2007.

Bart Beulen, Nathalie Bijnens, Marcel Rutten, Peter Brands, Frans van de Vosse,” Perpendicular ultrasound velocity measurement by 2D cross correlation of RF data. Part A: validation in a straight tube,” Springer, pp. 1219-1229, 2010.

M. A. Lubinski, S. Y. Emelianov, and M. O'Donnell, "Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 46, pp. 82-96, 1999.

Heng Zhao, Bo Qiang, Carolina Amador, Pengfei Song, Matthew W. Urban, Randall R. Kinnick, James F. Greenleaf, Shigao Chen, ” Measure Elasticity and Viscosity Using the Out-of-plane Shear Wave,” Ultrasonics Symposium, IEEE, pp. 212-215, 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *