|
Micro-Grid and Distributed Power Systems [1] Y. Ito, Z.Q. Yang and H. Akagi, “DC microgrid based distribution power generation system,” in Proc. IEEE IPEMC, 2004, pp. 1740-1745. [2] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgrids,” IEEE Power Energy, vol. 5, no. 4, pp. 78-94, 2007. [3] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp.1369-1380. [4] H. Kakigano, M. Nomura and T. Ise, “Loss evaluation of DC distribution for residential houses compared with AC system,” in Proc. IEEE IPEC, 2010, pp. 480-486. [5] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, 2010. [6] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011. [7] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuña and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids - a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2011. [8] M. Sechilariu, Wang Baochao and F. Locment, “Building integrated photovoltaic system with energy storage and smart grid communication,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1607-1618, 2013. [9] P. C. Loh, D. Li, Y. K. Chai and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, 2013. [10] T. Dragicevic, J. M. Guerrero, J. C. Vasquez and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, 2014. [11] Lu Xiaonan, Sun Kai, J. M. Guerrero, J. C. Vasquez and Huang Lipei, “State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2804-2815, 2014. B. Switched-Reluctance Machines Switched-Reluctance Motors [12] P. C. Sen, Principles of Electric Machines and Power Electronics, 2nd ed., New Jersey: John Wiley & Sons, Inc., 1997. [13] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001. [14] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000. [15] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009. [16] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kw IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012. [17] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012. [18] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995. [19] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002. [20] B. Bilgin, A. Emadi and M. Krishnamurthy, “Design considerations for switched reluctance machines with a higher number of rotor poles,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3745-3756, 2012. [21] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003. [22] Z. Lin, D. Reay, B. Williams and X. He, “High-performance current control for switched reluctance motors based on on-line estimated parameters,” IEEE Trans. Elect. Power Appl., vol. 4, no. 1, pp. 67-74, 2010. [23] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002. [24] H. Hannoun, M. Hilairet and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010. [25] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003. [26] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003. [27] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992. [28] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010. [29] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012. Switched-Reluctance Generators [30] A. Radun, “Generating with the switched reluctance motor,” in Proc. IEEE APEC, 1994, vol. 1, pp. 41-47. [31] M. Menne, R. B. Inderka and R. W. De Doncker, “Critical states in generating mode of switched reluctance machines,” in Proc. IEEE PESC, 2000, vol. 3, pp. 1544-1550. [32] I. Husain, A. Radun and J. Nairus, “Fault analysis and excitation requirements for switched reluctance-generators,” IEEE Trans. Energy Convers., vol. 17, no. 1, pp. 67-72, 2002. [33] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002. [34] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, 2005. [35] C. Mademlis and I. Kioskeridis, “Optimizing performance in current-controlled switched reluctance generators,” IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 556-565, 2005. [36] T. Yamaguchi, N. Yamamura and M. Ishda, “Study for small size wind power generating system using switched reluctance generator,” in Proc. IEEE ICIT, 2006, pp. 1510-1515. [37] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008. [38] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury and C. A. Bissochi, “DSP based SRG load voltage control,” in Proc. IEEE VPPC, 2010, pp. 1-5. [39] W. Fernando, M. Barnes and O. Marjanovic, “Excitation control and voltage regulation of switched reluctance generators above base speed operation,” in Proc. IEEE VPPC, 2011, pp. 1-6. [40] S. Narla, Y. Sozer and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” in Proc. IEEE ECCE, 2011, pp. 3575-3581. [41] V. Nasirian, S. Kaboli and A. Davoudi, “Output power maximization and optimal symmetric freewheeling excitation for switched reluctance generators,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1031-1042, 2013. [42] D. W. Choi, S. I. Byun and Y. H. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, 2014. [43] C. Sikder, I. Husain and Y. Sozer, “Switched reluctance generator control for optimal power generation with current regulation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 307-316, 2014. [44] B. Fahimi, A. Emadi and R. B. Sepe Jr, “A switched reluctance machine-based starter/alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, 2004. [45] N. Schofield and S. Lomg, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009. Converters for Switched-Reluctance Machines [46] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991. [47] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998. [48] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002. [49] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., vol. 147, no. 5, pp. 337-344, 2000. [50] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009. [51] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011. [52] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009. [53] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vo. 25, no. 5, pp. 1135-1148, 2010. C. Flywheel Energy Storage Systems [54] J. L. da Silva Neto, L. G. B. Rolim and G. G. Sotelo, “Control of a power circuit interface of a flywheel-based energy storage system,” in Proc. IEEE ISIE., 2003, vol. 2, pp. 962-967. [55] J. L. S. Neto, R. De Andrade, L. G. B. Rolim, A. C. Ferreira, G. G. Sotelo and W. Suemitsu, “Experimental validation of a dynamic model of a SRM used in superconducting bearing flywheel energy storage system,” in Proc. IEEE ISIE, 2006, pp. 2492-2497. [56] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006. [57] M. El Mokadem, C. Nichita, P. Reghem and B. Dakyo, “Short term energy storage based on reluctance machine control for wind diesel system,” in Proc. IEEE EPE/PEMC, 2006, pp. 1585-1590. [58] Jr. R. Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. S. Neto, R. M. Stephan, W. I. Suemitsu and R. Nicolsky, “Flywheel energy storage system description and tests,” IEEE Trans. Ind. Electron., vol. 17, no. 2, pp. 2154-2157, 2007. [59] A. Rajapakshe, U. K. Madawala and D. Muthumani, “A model for a flywheel driven by a grid connected switch reluctance machine,” in Proc. IEEE ICSET, 2008, pp. 1025-1030. [60] R. Pena-Alzola, R. Sebastian, J. Quesada and A. Colmenar, “Review of flywheel based energy storage systems,” in Proc. IEEE PowerEng., 2011, pp. 1-6. [61] J. Sun, Z. Kuang, S. Wang and Y. Chen, “Efficiency optimal control of switched reluctance machine over wide speed range applied to flywheel energy storage system,” in Proc. IEEE EML., 2012, pp.1-6. [62] G. O. Suvire, M. G. Molina and P. E. Mercado, “Improving the integration of wind power generation into AC microgrids using flywheel energy storage,” IEEE Trans. Smart Grid, vol. 3, no.4, pp. 1945-1954, 2012. [63] R. Arghandeh, M. Pipattanasomporn and S. Rahman, “Flywheel energy storage systems for ride-through applications in a facility microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1955-1962, 2012. [64] C. S. Hearn, M. C. Lewis, S. B. Pratap, R. E. Hebner, F. M. Uriarte, C. Dongmei and R.G. Longoria, “Utilization of optimal control law to size grid-level flywheel energy storage,” IEEE Trans. Sustain. Eng., vol. 4, no. 3, pp. 611-618, 2013. [65] J.-I. Itoh, K. Tanaka, S. Matsuo and N. Yamada, “Experimental verification of flywheel power leveling system oriented to low cost and general purpose use,” in Proc. IEEE ECCE., 2013, pp.35-42. [66] S. Gayathri Nair and N. Senroy, “Wind turbine with flywheel for improved power smoothening and LVRT,” in Proc. IEEE PES., 2013, pp.1-5. D. Interface Power Electronic Converters [67] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003. [68] D. G. Holmes, P. Atmur, C. C. Beckett, M. P. Bull, W. Y. Kong, W. J. Luo, D. K. C. Ng, N. Sachchithananthan, P. W. Su, D. P. Ware and P. Wrzos, “An innovative, efficient current-fed push-pull grid connectable inverter for distributed generation systems,” in Proc. IEEE PESC, 2006, pp. 1-6. [69] M. Delshad and H. Farzanehfard, “A soft switching flyback current-fed push pull DC-DC Converter with active clamp circuit,” in Proc. IEEE PECON, 2008, pp. 203-207. [70] F. J. Nome and I. Barbi, “A ZVS clamping mode-current-fed push-pull DC-DC converter,” in Proc. IEEE ISIE, 2009, vol. 2, pp. 617-621. [71] Y. H. Kim, S. C. Shin, J. H. Lee, Y. C. Jung and C. Y. Won, “Soft-switching current-fed push-pull converter for 250-W AC module applications,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 863-872, 2014. [72] U. R. Prasanna and A. K. Rathore, “Current-fed interleaved phase-modulated single-phase unfolding inverter: analysis, design, and experimental results,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 310-319, 2014. [73] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389. [74] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892. [75] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437-1443, 2009. [76] E. Hiraki, K. Hirao, T. Tanaka and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10. [77] N. M. L. Tan, T. Abe and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011. [78] A. A. Fardoun, E. H. Ismail, A.J. Sabzali and M. A. Al-Saffar, “Bi-directional converter with low input/output current ripple for renewable energy applications,” in Proc. ECCE, 2011, pp. 3322-3329. [79] Nihal Kularatna, “Rechargeable batteries and their management,” IEEE Instrum. Meas. Mag., vol. 14, no. 2, pp. 20-33, 2011. [80] Y. C. Chang, “Development of a switched-reluctance generator and its application to the establishment of microgrid system,” Ph.D. dissertation, Department of Electrical Engineering National Tsing Hua University, ROC, 2010. [81] K. F. Chou, “A wind driven switched-reluctance generator based DC micro-grid supported by energy storages of battery and flywheel,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2012. [82] J. C. Wang, “A wind switched-reluctance generator based DC micro-grid with interleaving interface converter and multiple energy storage devices,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2013. E. PWM Inverters [83] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, New Jersey: Wiley-IEEE Press, 2003. [84] Y. Wue, L. Chang, S. B. Kjær, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004. [85] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009. [86] K. Selvajyothi and P. A. Janakiraman, “Reduction of voltage harmonics in single phase inverters using composite observers,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 1045-1057, 2010. [87] S. Dasgupta, S. N. Mohan, S. K. Sahoo and S. K. Panda, “Evaluation of current reference generation methods for a three-phase inverter interfacing renewable energy sources to generalized micro-grid,” in Proc. IEEE PEDS, 2011, pp.316-321. [88] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998. [89] B. Sahan, S. V. Araujo, C. Noding and P. Zacharias, “Comparative evaluation of three-phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011. [90] J. M. Espí, J. Castelló, R. García-Gil, G. Garcerá and E. Figueres, “An adaptive robust predictive current control for three-phase grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3537-3546, 2011. [91] R. Carballo, R. Nunez, V. Kurtz and F. Botteron, “Design and implementation of a three-phase DC-AC converter for microgrids based on renewable energy sources,” IEEE Trans. Latin Ameri., vol. 11, no. 1, pp. 112-118, 2013. [92] G. G. Pozzebon, A. F. Q. Goncalves, G. G. Pena, N. E. M. Mocambique and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013. [93] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST, 2000, vol. 3, pp. 1659-1664. [94] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999. [95] A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
|