帳號:guest(18.189.184.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林才勝
作者(外文):Lin, Tsai-Sheng
論文名稱(中文):具混合式儲能源及插入式市電能源補充之風力開關式磁阻發電機為主直流微電網
論文名稱(外文):A WIND SWITCHED-RELUCTANCE GENERATOR BASED DC MICRO-GRID WITH HYBRID ENERGY STORAGE SYSTEM AND PLUG-IN AUXILIARY ENERGY SUPPORT FROM UTILITY GRID
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):王醴
龔應時
廖聰明
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061512
出版年(民國):103
畢業學年度:102
語文別:中文英文
論文頁數:181
中文關鍵詞:風力發電機開關式磁阻電機微電網儲能系統飛輪蓄電池交錯式負載變頻器強健控制動態換相移位插入式
外文關鍵詞:Wind generatorswitched-reluctance machinemicro-gridenergy storage systemflywheelbatteryinterleavingload inverterrobust controldynamic commutation shiftplug-in
相關次數:
  • 推薦推薦:0
  • 點閱點閱:79
  • 評分評分:*****
  • 下載下載:25
  • 收藏收藏:0
  本論文旨在開發以風力開關式磁阻發電機為主之直流微電網,其具含飛輪及蓄電池組成之混合儲能系統,並配具由既有開關式磁阻發電機電力電路建構之插入式市電能源補充機構。
  所建之風力開關式磁阻發電機經由交錯式昇壓直流/直流轉換器介接至微電網之共同直流匯流排,經由適當地電力電路設計、強健電壓控制、電壓命令設定及換相移位,在變動之驅動轉速及負載下可得良好之直流匯流排電壓調控特性。且因採用交錯式技術,亦可得較小之輸入電流紋波及較高之可靠度。為從事微電網之實測性能評估,本論文亦建構了一個三相負載變頻器,經由適當控制,於線性及非線性負載下可獲得良好之交流輸出電壓波形及動態調節特性。
  於所建之混合式儲能系統,電池組經由一雙向降/昇壓直流/直流介面轉換器介接至微電網之共通直流鏈,經由適當地設計其電力電路及控制器,可得良好之充、放電特性。而所建構開關式磁阻馬達驅動之飛輪則配以雙向昇/昇壓直流/直流介面轉換器,並提出一些改善其放電性能之策略,以及從事其比較評估。
  最後,於所建構之插入式市電能量補充機構,由原開關式磁阻發電機系統之元件改接形成一單相交錯式昇壓切換式整流器,在由市電對微電網補充能源下,具有良好之入電電力品質。
In this thesis, a switched-reluctance generator (SRG) based DC micro-grid is established. It is equipped with a hybrid energy storage system composed of a flywheel and a lead-acid battery bank. The plug-in energy support through SRG power circuit from the utility grid is also implemented.
The developed SRG is interfaced to the micro-grid common DC bus via an interleaved boost DC/DC converter. Well regulated DC bus voltage is obtained under varying shaft driving speeds and load conditions by properly treating the related key issues, such as power circuit design, robust voltage control, voltage command setting and commutation shift, etc. Also, lower input current ripples and higher reliability are preserved since the interleaving technique. To evaluate the established DC micro-grid experimentally, a three-phase load inverter with proper control is established. Good AC voltage waveform and dynamic response characteristics are achieved under linear and nonlinear load.
In the developed hybrid energy storage system, the battery bank is interfaced to the common DC bus through a bilateral buck/boost DC/DC converter. Good charging and discharging characteristics are achieved through properly designing the power circuit and controllers. As to the switched-reluctance motor driven flywheel, the proposed bilateral boost/boost DC/DC converter is employed as its interface. Several discharging performance improvement approaches are proposed and comparatively evaluated.
In the developed plug-in energy support mechanism, a single phase interleaved boost switched-mode rectifier is formed using the original SRG system components. The energy support from the mains to the micro-grid with good line drawn power quality is achieved.
ABSRACT
LIST OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF SYMBOLS
CHAPTER 1 INTRODUCTION
CHAPTER 2 INTRODUCTION OF MICRO-GRID AND SWITCHED-RELUCTANCE MACHINE
CHAPTER 3 DESIGN AND IMPLEMENTATION OF A WIND SWITCHED-RELUCTANCE GENERATOR SYSTEM WITH INTERLEAVED INTERFACE CONVERTER
CHAPTER 4 HYBRID ENERGY STORAGE SYSTEM
CHAPTER 5 EVALUATION OF THE SRG-BASED DC MICRO-GRID IN PLUG-IN MODE
CHAPTER 6 EVALUATION OF THE SRG-BASED DC MICRO-GRID
Micro-Grid and Distributed Power Systems
[1] Y. Ito, Z.Q. Yang and H. Akagi, “DC microgrid based distribution power generation system,” in Proc. IEEE IPEMC, 2004, pp. 1740-1745.
[2] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgrids,” IEEE Power Energy, vol. 5, no. 4, pp. 78-94, 2007.
[3] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp.1369-1380.
[4] H. Kakigano, M. Nomura and T. Ise, “Loss evaluation of DC distribution for residential houses compared with AC system,” in Proc. IEEE IPEC, 2010, pp. 480-486.
[5] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, 2010.
[6] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011.
[7] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuña and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids - a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2011.
[8] M. Sechilariu, Wang Baochao and F. Locment, “Building integrated photovoltaic system with energy storage and smart grid communication,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1607-1618, 2013.
[9] P. C. Loh, D. Li, Y. K. Chai and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, 2013.
[10] T. Dragicevic, J. M. Guerrero, J. C. Vasquez and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, 2014.
[11] Lu Xiaonan, Sun Kai, J. M. Guerrero, J. C. Vasquez and Huang Lipei, “State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2804-2815, 2014.
B. Switched-Reluctance Machines
 Switched-Reluctance Motors
[12] P. C. Sen, Principles of Electric Machines and Power Electronics, 2nd ed., New Jersey: John Wiley & Sons, Inc., 1997.
[13] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[14] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
[15] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[16] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kw IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[17] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012.
[18] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
[19] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[20] B. Bilgin, A. Emadi and M. Krishnamurthy, “Design considerations for switched reluctance machines with a higher number of rotor poles,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3745-3756, 2012.
[21] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[22] Z. Lin, D. Reay, B. Williams and X. He, “High-performance current control for switched reluctance motors based on on-line estimated parameters,” IEEE Trans. Elect. Power Appl., vol. 4, no. 1, pp. 67-74, 2010.
[23] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[24] H. Hannoun, M. Hilairet and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010.
[25] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[26] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[27] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992.
[28] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010.
[29] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
 Switched-Reluctance Generators
[30] A. Radun, “Generating with the switched reluctance motor,” in Proc. IEEE APEC, 1994, vol. 1, pp. 41-47.
[31] M. Menne, R. B. Inderka and R. W. De Doncker, “Critical states in generating mode of switched reluctance machines,” in Proc. IEEE PESC, 2000, vol. 3, pp. 1544-1550.
[32] I. Husain, A. Radun and J. Nairus, “Fault analysis and excitation requirements for switched reluctance-generators,” IEEE Trans. Energy Convers., vol. 17, no. 1, pp. 67-72, 2002.
[33] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002.
[34] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, 2005.
[35] C. Mademlis and I. Kioskeridis, “Optimizing performance in current-controlled switched reluctance generators,” IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 556-565, 2005.
[36] T. Yamaguchi, N. Yamamura and M. Ishda, “Study for small size wind power generating system using switched reluctance generator,” in Proc. IEEE ICIT, 2006, pp. 1510-1515.
[37] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[38] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury and C. A. Bissochi, “DSP based SRG load voltage control,” in Proc. IEEE VPPC, 2010, pp. 1-5.
[39] W. Fernando, M. Barnes and O. Marjanovic, “Excitation control and voltage regulation of switched reluctance generators above base speed operation,” in Proc. IEEE VPPC, 2011, pp. 1-6.
[40] S. Narla, Y. Sozer and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” in Proc. IEEE ECCE, 2011, pp. 3575-3581.
[41] V. Nasirian, S. Kaboli and A. Davoudi, “Output power maximization and optimal symmetric freewheeling excitation for switched reluctance generators,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1031-1042, 2013.
[42] D. W. Choi, S. I. Byun and Y. H. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, 2014.
[43] C. Sikder, I. Husain and Y. Sozer, “Switched reluctance generator control for optimal power generation with current regulation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 307-316, 2014.
[44] B. Fahimi, A. Emadi and R. B. Sepe Jr, “A switched reluctance machine-based starter/alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, 2004.
[45] N. Schofield and S. Lomg, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009.
 Converters for Switched-Reluctance Machines
[46] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[47] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
[48] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[49] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., vol. 147, no. 5, pp. 337-344, 2000.
[50] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[51] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[52] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[53] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vo. 25, no. 5, pp. 1135-1148, 2010.
C. Flywheel Energy Storage Systems
[54] J. L. da Silva Neto, L. G. B. Rolim and G. G. Sotelo, “Control of a power circuit interface of a flywheel-based energy storage system,” in Proc. IEEE ISIE., 2003, vol. 2, pp. 962-967.
[55] J. L. S. Neto, R. De Andrade, L. G. B. Rolim, A. C. Ferreira, G. G. Sotelo and W. Suemitsu, “Experimental validation of a dynamic model of a SRM used in superconducting bearing flywheel energy storage system,” in Proc. IEEE ISIE, 2006, pp. 2492-2497.
[56] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006.
[57] M. El Mokadem, C. Nichita, P. Reghem and B. Dakyo, “Short term energy storage based on reluctance machine control for wind diesel system,” in Proc. IEEE EPE/PEMC, 2006, pp. 1585-1590.
[58] Jr. R. Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. S. Neto, R. M. Stephan, W. I. Suemitsu and R. Nicolsky, “Flywheel energy storage system description and tests,” IEEE Trans. Ind. Electron., vol. 17, no. 2, pp. 2154-2157, 2007.
[59] A. Rajapakshe, U. K. Madawala and D. Muthumani, “A model for a flywheel driven by a grid connected switch reluctance machine,” in Proc. IEEE ICSET, 2008, pp. 1025-1030.
[60] R. Pena-Alzola, R. Sebastian, J. Quesada and A. Colmenar, “Review of flywheel based energy storage systems,” in Proc. IEEE PowerEng., 2011, pp. 1-6.
[61] J. Sun, Z. Kuang, S. Wang and Y. Chen, “Efficiency optimal control of switched reluctance machine over wide speed range applied to flywheel energy storage system,” in Proc. IEEE EML., 2012, pp.1-6.
[62] G. O. Suvire, M. G. Molina and P. E. Mercado, “Improving the integration of wind power generation into AC microgrids using flywheel energy storage,” IEEE Trans. Smart Grid, vol. 3, no.4, pp. 1945-1954, 2012.
[63] R. Arghandeh, M. Pipattanasomporn and S. Rahman, “Flywheel energy storage systems for ride-through applications in a facility microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1955-1962, 2012.
[64] C. S. Hearn, M. C. Lewis, S. B. Pratap, R. E. Hebner, F. M. Uriarte, C. Dongmei and R.G. Longoria, “Utilization of optimal control law to size grid-level flywheel energy storage,” IEEE Trans. Sustain. Eng., vol. 4, no. 3, pp. 611-618, 2013.
[65] J.-I. Itoh, K. Tanaka, S. Matsuo and N. Yamada, “Experimental verification of flywheel power leveling system oriented to low cost and general purpose use,” in Proc. IEEE ECCE., 2013, pp.35-42.
[66] S. Gayathri Nair and N. Senroy, “Wind turbine with flywheel for improved power smoothening and LVRT,” in Proc. IEEE PES., 2013, pp.1-5.
D. Interface Power Electronic Converters
[67] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[68] D. G. Holmes, P. Atmur, C. C. Beckett, M. P. Bull, W. Y. Kong, W. J. Luo, D. K. C. Ng, N. Sachchithananthan, P. W. Su, D. P. Ware and P. Wrzos, “An innovative, efficient current-fed push-pull grid connectable inverter for distributed generation systems,” in Proc. IEEE PESC, 2006, pp. 1-6.
[69] M. Delshad and H. Farzanehfard, “A soft switching flyback current-fed push pull DC-DC Converter with active clamp circuit,” in Proc. IEEE PECON, 2008, pp. 203-207.
[70] F. J. Nome and I. Barbi, “A ZVS clamping mode-current-fed push-pull DC-DC converter,” in Proc. IEEE ISIE, 2009, vol. 2, pp. 617-621.
[71] Y. H. Kim, S. C. Shin, J. H. Lee, Y. C. Jung and C. Y. Won, “Soft-switching current-fed push-pull converter for 250-W AC module applications,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 863-872, 2014.
[72] U. R. Prasanna and A. K. Rathore, “Current-fed interleaved phase-modulated single-phase unfolding inverter: analysis, design, and experimental results,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 310-319, 2014.
[73] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
[74] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
[75] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437-1443, 2009.
[76] E. Hiraki, K. Hirao, T. Tanaka and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10.
[77] N. M. L. Tan, T. Abe and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
[78] A. A. Fardoun, E. H. Ismail, A.J. Sabzali and M. A. Al-Saffar, “Bi-directional converter with low input/output current ripple for renewable energy applications,” in Proc. ECCE, 2011, pp. 3322-3329.
[79] Nihal Kularatna, “Rechargeable batteries and their management,” IEEE Instrum. Meas. Mag., vol. 14, no. 2, pp. 20-33, 2011.
[80] Y. C. Chang, “Development of a switched-reluctance generator and its application to the establishment of microgrid system,” Ph.D. dissertation, Department of Electrical Engineering National Tsing Hua University, ROC, 2010.
[81] K. F. Chou, “A wind driven switched-reluctance generator based DC micro-grid supported by energy storages of battery and flywheel,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2012.
[82] J. C. Wang, “A wind switched-reluctance generator based DC micro-grid with interleaving interface converter and multiple energy storage devices,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2013.
E. PWM Inverters
[83] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, New Jersey: Wiley-IEEE Press, 2003.
[84] Y. Wue, L. Chang, S. B. Kjær, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[85] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
[86] K. Selvajyothi and P. A. Janakiraman, “Reduction of voltage harmonics in single phase inverters using composite observers,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 1045-1057, 2010.
[87] S. Dasgupta, S. N. Mohan, S. K. Sahoo and S. K. Panda, “Evaluation of current reference generation methods for a three-phase inverter interfacing renewable energy sources to generalized micro-grid,” in Proc. IEEE PEDS, 2011, pp.316-321.
[88] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[89] B. Sahan, S. V. Araujo, C. Noding and P. Zacharias, “Comparative evaluation of three-phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011.
[90] J. M. Espí, J. Castelló, R. García-Gil, G. Garcerá and E. Figueres, “An adaptive robust predictive current control for three-phase grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3537-3546, 2011.
[91] R. Carballo, R. Nunez, V. Kurtz and F. Botteron, “Design and implementation of a three-phase DC-AC converter for microgrids based on renewable energy sources,” IEEE Trans. Latin Ameri., vol. 11, no. 1, pp. 112-118, 2013.
[92] G. G. Pozzebon, A. F. Q. Goncalves, G. G. Pena, N. E. M. Mocambique and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013.
[93] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST, 2000, vol. 3, pp. 1659-1664.
[94] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
[95] A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *