|
A. Microgrids and Wind Generators [1] Y. Ito, Y. Zhongqing and H. Akagi, “DC microgrid based distribution power generation system,” in Proc. IEEE Int. Power Electron. Motion Control Conf., 2004, vol. 3, pp. 1740-1745. [2] N. hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgrids,” IEEE Power Energy Mag., vol. 5, no. 4, pp. 78-94, 2007. [3] O. Anaya-Lara, N. Jenkins, J. Ekanayake, P. Cartwright and M. Hughes, Wind Energy Generation: Modeling and Control, Chichester: John Wiley and Sons, 2009. [4] L. H. Hansen, P. H. Madsen, F. Blaabjerg, H. C. Christensen, U. Lindhard and K. Eskildsen, “Generators and power electronics technology for wind turbine,” in Proc. IEEE IECON, 2001, vol. 3, pp.2000-2005. [5] Z. Chen, J. M. Guerrero and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859-1875, 2009. [6] N. A. Orlando, M. Liserre, R. A. Mastromauro and A. Dell'Aquila, “A survey of control issues in PMSG-based small wind-turbine systems,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 529–539, 2013. [7] F. Blaabjerg, M. Liserre and K. Ma, “Power electronics converters for wind turbine system,” IEEE Trans Ind. Appl., vol. 48, no. 2, pp. 708-719, 2012. [8] F. Blaabjerg and K. Ma, “Future on power electronics for wind turbine systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 1, no. 3, pp. 139-152, 2013. B. Permanent-Magnet Synchronous Generator [9] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 3rd ed. New York: Wiley-IEEE, 2013. [10] G. Hua, Y. Geng, X. Dewei and W. Bin, “Unified power control for PMSG-based WECS operating under different grid conditions,” IEEE Trans. Energy Convers., vol. 26, no. 3, pp.822-830, 2011. [11] C. N. Bhende, S. Mishra and S. G. Malla, “Permanent magnet synchronous generator-based standalone wind energy supply system,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 361-373, 2011. [12] H. Karimi-Davijani and O. Ojo, “Optimum control of grid connected interior permanent magnet wind turbine generator,” in Proc. IEEE ECCE, 2012, pp. 3764-3771. [13] P. Roshanfekr, T. Thiringer and M. Alatalo, “Performance of two 5 MW permanent magnet wind turbine generators using surface mounted and interior mounted magnets,” in Proc. IEEE ICEM, 2012, pp. 1041-1047. [14] M. N. Uddin and N. Patel, “Maximum power point tracking control of IPMSG with loss minimization algorithm for wind energy conversion system,” in Proc. IEEE IAS, 2013, pp. 1-7. [15] K. W. Hu and C. M. Liaw, “Establishment of an IPMSG system with Vienna SMR and its applications to microgrids,” in Proc. IEEE IECON, 2013, pp.1619-1626. C. Switch-Mode Rectifiers [16] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003. [17] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003. [18] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Eletron., vol. 19, no. 6, pp. 1417-1425, 2004. [19] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004. [20] J. W. Kolar, T. Friedli, “The essence of three-phase PFC rectifier systems—part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013. [21] M. S. Dawande, V. R. Kanetkar and G. K. Dubey, “Three-phase switch mode rectifier with hysteresis current control,” IEEE Trans. Power Eletron., vol. 11, no. 3, pp. 466-471, 1996. [22] R. Tonkoski, L. A. C. Lopes and F. D. Reis. “A single-switch three-phase boost rectifier to reduce the generator losses in wind energy conversion systems,” in Proc. IEEE EPEC, 2009, pp. 1-8. [23] N. B. H. Youssef, F. Fnaiech and K. Al-Haddad, “Small signal modeling and control design of a three-phase AC/DC Vienna converter,” in Proc. IEEE IECON, 2003, vol. 1, pp.656-661. [24] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal of three-phase three level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008. [25] H. Chen, N. David and D. C. Aliprantis, “Analysis of permanent-magnet synchronous generator with Vienna rectifier for wind energy conversion system,” IEEE Trans. Sustain. Energy, vol. 4, no. 1, pp. 154-163, 2013. [26] A. Rajaei, M. Mohamadian and A. Y. Varjani, “Vienna-rectifier-based direct torque control of PMSG for wind energy application,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2919-2929, 2013. [27] T. Friedli, M. Hartmann and J. W. Kolar, “The essence of three-phase PFC rectifier systems—Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014. D. Wind Turbine Emulators [28] L. A. C. Lopes, J. Lhuilier, A. Mukherjee and M. F. Khokhar, “A wind turbine emulator the represents the dynamics of the wind turbine rotor and drive train lopes,” in Proc. IEEE PESC, 2005, pp. 2092-2097. [29] J. M. Nye, J. G. de la Bat, M. A. Khan and P. Barendse, “Design and implementation of a variable speed wind turbine emulator,” in Proc. IEEE ICEM, 2012, pp. 2060-2065. [30] S. Kouadria, S. Belfedhal, Y. Meslem and E. M. Berkouk, “Development of real time wind turbine emulator based on DC motor controlled by hysteresis regulator,” in Proc. IRSEC, 2013, pp. 246-250. [31] M. Arifujjaman, M. T. Iqbal and J. E. Quaicoe, “An isolated small wind turbine emulator,” in Proc. CCECE, 2006, pp. 1854-1857. [32] L. Peretti, V. Sarkimaki and J. Faber, “Wind turbine emulator for generator control algorithm development,” in Proc. IEEE ICIT, 2013, pp. 228-233. [33] G. Henz, G. Koch, C. M. Franchi and H. Pinheiro, “Development of a variable speed wind turbine emulator for research and training,” in Proc. COBEP, 2013, pp. 737-742. [34] S. Tammaruckwattana and K. Ohyama, “Experiment verification of variable wind speed power generation system using permanent magnet synchronous generator by wind turbine emulator,” in Proc. IEEE IES, 2012, pp. 5827-5832. [35] J. Vaheeshan, V. Vihirthanath, S. G. Abeyaratne, A. Atputharajah and G. Ramatharan, “Wind turbine emulator,” in Proc. IEEE ICIIS, 2011, pp. 511-516. [36] N. Muntean, L. Tutelea, D. Petrila, and O. Pelan, “Hardware in the loop wind turbine emulator,” in Proc. IEEE ACEMP, 2011, pp. 53-58. [37] D. Llano, M. Tatlow and R. McMahon, “Control algorithm for permanent magnet generators evaluated on a wind turbine emulator test-rig,” in Proc. IET PEMD, 2014, pp.1-7. E. Maximum Power Point Tracking Method [38] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, 2005. [39] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486-494, 2006. [40] Y. Zou, M. E. Elbuluk and Y. Sozer, “Stability analysis of maximum power point tracking (mppt) method in wind power systems,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1129-1136, 2013. [41] R. Vepa, “Nonlinear, Optimal Control of a Wind Turbine Generator,” IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 468-478, 2011. [42] Y. Xia, K. H. Ahmed and B.W. Williams, “A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3609-3620, 2011. [43] Z. M. Dalala, Z. U. Zahid, W. S. Yu and Y. H. Cho, “Design and analysis of an MPPT technique for small-scale wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 756-767, 2013. F. Permanent-Magnet Synchronous Motor Drives Motor analysis and design [44] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw, Inc., 1994. [45] R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, New Jersey: Prentice Hall, Inc., 2001. [46] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002. [47] Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 118-124, 2007. [48] P. C. Sen, Principles of Electric Machines and Power Electronics, New York: John Wiley and Sons, 2013. [49] D. Zarko, D. Ban and T. A. Lipo, “Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance,” IEEE Trans. Magn., vol. 42, no. 7, pp. 1828-1837, 2006. [50] M. Sanada and S. Morimoto, “Efficiency improvement in high speed operation using slot-less configuration for permanent magnet synchronous motor,” in Proc. IEEE Power Engineering, 2007, vol. 1, no. 1, pp. 1-7. [51] G. Sooriyakumar, R. Perryman and S. J. Dodds, “Cogging analysis for fractional slot/pole permanent magnet synchronous motors,” in Proc. UPEC, 2007, pp. 188-191. [52] R. Islam, I. Husain, A. Fardoun and K. McLaughlin, “Permanent-magnet synchronous motor magnet designs with skewing for torque tipple and cogging torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, 2009. [53] M. Franko, J. Ondrejicka and J. Kuchta, “Development and examination of interior permanent magnet synchronous traction Motor,” in Proc. ELEKTRO, 2012 pp. 179-184. [54] S. Chaithongsuk, B. Nahid-Mobarakeh, J. Caron, N. Takorabet and F. Meibody-Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484 - 2494, 2012 [55] S. Morimoto, O. Shohei, Y. Inoue, M. Sanada, “Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5749-5756, 2014. Equivalent circuit modeling and parameter estimation [56] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, Part I: The permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989. [57] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34. [58] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 645-650, 2002. [59] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003. [60] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051. [61] M. C.Chou, C. M. Liaw, S. B.Chien, F. H. Shieh, J. R. Tsai, H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 58-74, 2011. [62] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for an SPMSM-driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, 2011. [63] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007. Current control [64] B. K. Bose, “An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system,” IEEE Trans. Ind. Electron., vol. 37, no. 5, pp. 402-408, 1990. [65] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001. [66] A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881. [67] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998. [68] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000. [69] M. C. Chou and C. M. Liaw, “Development of robust current two-degrees- of-freedom controllers for permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009. [70] H. L. Huy, K. Slimani and P. Viarouge, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” in Proc. IEEE IAS, 1991, vol. 1, no. 28, pp. 996-1002. [71] H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003. [72] J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495-503, 2007. [73] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009. Speed control [74] S. Li and Z. Liu, “Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3050-3059, 2009. [75] M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive speed control for vector controlled permanent magnet synchronous motor drive,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 618-623. [76] Y. A. R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, 2006. [77] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009. [78] A. Sabanovic and F. Bilalovic, “Sliding mode control of AC drives,” IEEE Trans. Ind. Appl., vol. 25, no. 1, pp. 70-75, 1989. [79] B. Singh, B. P. Singh and S. Dwivedi, “DSP based implementation of sliding mode speed controller for direct torque controlled PMSM drive,” in Proc. IEEE ICIT, 2006, pp. 1301-1308. [80] M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141. [81] M. A. Rahman, D.M. Vilathgamuwa, M.N. Uddin and K. J. Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 408-416, 2003. [82] K. H. Kim and M. J. Youn, “A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 524-535, 2002. [83] S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear controller design for a permanent magnet synchronous motor,” in Proc. IEEE IEMDC, 2007, vol. 1, pp. 776-780. [84] R. Errouissi, M. Ouhrouche, W. H. Chen and A. M. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2849-2858, 2012. [85] I. C. Baik, K. H. Kim and M. J. Youn, “Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique,” IEEE Trans. Control Syst. Technol., vol. 8, no. 1, pp. 47-54, 2000. [86] E. J. Fuentes, C. Silva, D. E. Quevedo and E. I. Silva, “Predictive speed control of a synchronous permanent magnet motor,” in Proc. IEEE ICIT, 2009, pp. 1-6. [87] H. Liu and S. Li, “Speed control for PMSM servo system using predictive functional control and extended state observer,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1171-1183, 2012. [88] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 1007-1015, 2013. [89] T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet synchronous motor drive based on neuro-fuzzy approach,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 602-606. [90] M. N. Uddin, M. A. Abido and M. A. Rahman, “Development and implementation of a hybrid intelligent controller for interior permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 68-79, 2004. [91] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009. Commutation [92] F. Aghili, M. Buehler and J. M. Hollerbach, “Optimal commutation laws in the frequency domain for PM synchronous direct-drive motors,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1056-1064, 2000. [93] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051. [94] G. H. Jang and M. G. Kim, “Optimal commutation of a BLDC motor by utilizing the symmetric terminal voltage,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3473-3475, 2006. Field-weakening control [95] W. L. Soong and T. J. E. Miller, “Field-weakening performance of brushless synchronous AC motor drives,” in Proc. IEE EPA, 1994, vol. 141, no. 6, pp. 331-340. [96] S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Trans. Ind. Appl., vol. 30, no. 4, pp. 920-926, 1994. [97] D. S. Maric, S. Hiti, C. C. Stancu and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet synchronous machine drives employing space vector modulation,” in Proc. IEEE IECON, 1998, vol. 1, pp. 508-512. [98] G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619-1627, 2009. Voltage boosting and pulse amplitude modulation [99] F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 607-614, 2004. [100] W. Zhigan, G. Zhou and Y. Jianping, “Line adaptive PAM & PWM drive for BLDCM,” in Proc. IEEE IPEMC, 2004, vol. 3, pp. 1263-1267. [101] K. Taniguchi, S. Saegusa and T. Morizane, “PAM inverter system with soft-switching PFC converter suitable for PM motor drive,” in Proc. IEEE PEDS, 2006, vol. 1, pp. 793-798. [102] A. Kawahashi, “A new-generation hybrid electric vehicle and its supporting power semiconductor devices,” in Proc. ISPSD, 2004, pp. 23-29. [103] M. C. Chou and C. M. Liaw, “PMSM-driven satellite reaction wheel system with adjustable DC-link voltage,” to appear in IEEE Trans. Aerosp. Electron. Syst., 2014. G. Others [104] “TMS320F2812 digital signal processors data manual,” http://www.ti.com/lit/ds/ symlink/tms320f2812.pdf [105] “TMS320F28335 digital signal processors data manual,” http://www.ti.com/lit/ds/ symlink/tms320f28335.pdf [106] M. H. Lee, “Estimated back-EMF based position sensorless interior permanent magnet synchronous motor drive,” M.S. Thesis, Department of Electric Engineering, National Tsing Hua Univ., Taiwan, R.O.C., 2008. [107] J. H. Huang, “A position sensorless permanent-magnet synchronous motor drive using signal injection,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2009.
|