帳號:guest(3.138.33.120)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳柏諺
作者(外文):CHEN, POYEN
論文名稱(中文):永磁同步馬達驅動之原動機模擬器
論文名稱(外文):A PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVEN PRIME MOVER EMULATOR
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):劉添華
謝欣然
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061509
出版年(民國):103
畢業學年度:102
語文別:中文英文
論文頁數:112
中文關鍵詞:永磁同步馬達發電機風力機原動機切換式整流器轉矩控制電流控制速度控制升壓最大功率追蹤
外文關鍵詞:Permanent magnet synchronous motorgeneratorwind turbineprime moverswitch-mode rectifiertorque controlcurrent controlspeed controlvoltage boostingmaximum power point tracking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:349
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
  本論文旨在開發一以永磁同步馬達為主之原動機模擬器,可驅動分散式及可再生式能源發電機。所開發之模擬器係以一弦波激勵表面貼磁式永磁同步馬達為致動器,由單相升壓切換式整流器供能,在提供穩定直流電壓下具良好交流入電電力品質。永磁同步馬達驅動系統之控制架構可操作成傳統發電機之速度控制模式,或風力發電機由風機決定之轉矩-速度控制模式。所開發切換式整流器及表面貼磁式永磁同步馬達驅動器之控制機構均妥以設計,以獲得忠實的原動機驅動特性,並具良好能量轉換效率與交流入電電力品質。
  為獲得強健之電流追蹤控制性能,切換式整流器之控制架構採用磁滯電流控制脈寬調變切換機構,並比較評估採固定磁滯帶與正弦變化磁滯帶之操控特性,含電流諧波頻譜分佈性及切換式整流器操作性能。
  為從事所建原動機模擬器之加載測試,本論文建立一具後接三相維也納切換式整流器之嵌入式永磁同步發電機。發電機將接收之原動機輸入機械能轉換控制建立400V之直流鏈電壓,以供直流微電網。所建嵌入式永磁同步發電機之控制架構亦經適當設計,以獲得良好之電流及電壓控制性能。此外,所建之原動機可模擬一些在不同風速下之風機轉矩-速度特性曲線,至於嵌入式永磁同步發電機後接三相維也納切換式整流器,則施以擾動觀察法則達到最大功率追蹤。最後,以實測結果評定所開發原動機模擬器驅動嵌入式永磁同步發電機之總體操控性能。
  A prime mover emulator using permanent-magnet synchronous motor (PMSM) for driving distributed and renewable generator is developed in this thesis. In the developed emulator, the sinewave excited surface-mounted PMSM (SPMSM) drive is powered from the mains via a single-phase boost-type switch mode rectifier (SMR) front-end with good line drawn power quality and well-regulated DC-link voltage. The PMSM drive control scheme is arranged to drive the tested generator in conventional speed control mode or wind turbine torque-speed control mode. Both the SMR and SPMSM drive control schemes are properly designed to achieve faithful prime mover driving behavior. Good energy conversion efficiency and line-drawn power quality are obtained simultaneously.
In SMR control scheme, it adopts hysteresis current-controlled PWM (H-CCPWM) switching to obtain robust current tracking control performance. Both fixed-band and sinusoidal varying-band are comparatively evaluated their current harmonic spectral spreading characteristics and operating performances.
  Next, for performing the prime mover loading test, an interior PMSG (IPMSG) followed by a three-phase Vienna SMR is established. It receives the mechanical driven power form prime mover and establishes a 400V DC-link for DC micro-grid. Similarly, good current and voltage control performances of the IPMSG are obtained by the designed control schemes. Furthermore, several wind turbine torque-speed characteristic curves under different wind speeds are emulated by the established prime mover. And maximum power point tracking (MPPT) function for the followed IPMSG with three-phase Vienna SMR is achieved by using perturb and observation (P&O) methodology. Finally, the whole prime mover emulator driven IPMSG system is assessed by some measured results.
誌謝 a
摘要 b
目錄 c
第一章、簡介 d
第二章、永磁同步馬達之基本事務 f
第三章、單相升壓切換式整流器 g
第四章、以原動機驅動永磁同步發電機後之維也納切換式整流
器之開發 h
第五章、原動機模擬器發電系統之開發 i
第六章、結論 j
附錄: 英文論文 l
A. Microgrids and Wind Generators
[1] Y. Ito, Y. Zhongqing and H. Akagi, “DC microgrid based distribution power generation system,” in Proc. IEEE Int. Power Electron. Motion Control Conf., 2004, vol. 3, pp. 1740-1745.
[2] N. hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgrids,” IEEE Power Energy Mag., vol. 5, no. 4, pp. 78-94, 2007.
[3] O. Anaya-Lara, N. Jenkins, J. Ekanayake, P. Cartwright and M. Hughes, Wind Energy Generation: Modeling and Control, Chichester: John Wiley and Sons, 2009.
[4] L. H. Hansen, P. H. Madsen, F. Blaabjerg, H. C. Christensen, U. Lindhard and K. Eskildsen, “Generators and power electronics technology for wind turbine,” in Proc. IEEE IECON, 2001, vol. 3, pp.2000-2005.
[5] Z. Chen, J. M. Guerrero and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859-1875, 2009.
[6] N. A. Orlando, M. Liserre, R. A. Mastromauro and A. Dell'Aquila, “A survey of control issues in PMSG-based small wind-turbine systems,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 529–539, 2013.
[7] F. Blaabjerg, M. Liserre and K. Ma, “Power electronics converters for wind turbine system,” IEEE Trans Ind. Appl., vol. 48, no. 2, pp. 708-719, 2012.
[8] F. Blaabjerg and K. Ma, “Future on power electronics for wind turbine systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 1, no. 3, pp. 139-152, 2013.
B. Permanent-Magnet Synchronous Generator
[9] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 3rd ed. New York: Wiley-IEEE, 2013.
[10] G. Hua, Y. Geng, X. Dewei and W. Bin, “Unified power control for PMSG-based WECS operating under different grid conditions,” IEEE Trans. Energy Convers., vol. 26, no. 3, pp.822-830, 2011.
[11] C. N. Bhende, S. Mishra and S. G. Malla, “Permanent magnet synchronous generator-based standalone wind energy supply system,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 361-373, 2011.
[12] H. Karimi-Davijani and O. Ojo, “Optimum control of grid connected interior permanent magnet wind turbine generator,” in Proc. IEEE ECCE, 2012, pp. 3764-3771.
[13] P. Roshanfekr, T. Thiringer and M. Alatalo, “Performance of two 5 MW permanent magnet wind turbine generators using surface mounted and interior mounted magnets,” in Proc. IEEE ICEM, 2012, pp. 1041-1047.
[14] M. N. Uddin and N. Patel, “Maximum power point tracking control of IPMSG with loss minimization algorithm for wind energy conversion system,” in Proc. IEEE IAS, 2013, pp. 1-7.
[15] K. W. Hu and C. M. Liaw, “Establishment of an IPMSG system with Vienna SMR and its applications to microgrids,” in Proc. IEEE IECON, 2013, pp.1619-1626.
C. Switch-Mode Rectifiers
[16] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[17] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[18] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Eletron., vol. 19, no. 6, pp. 1417-1425, 2004.
[19] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[20] J. W. Kolar, T. Friedli, “The essence of three-phase PFC rectifier systems—part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[21] M. S. Dawande, V. R. Kanetkar and G. K. Dubey, “Three-phase switch mode rectifier with hysteresis current control,” IEEE Trans. Power Eletron., vol. 11, no. 3, pp. 466-471, 1996.
[22] R. Tonkoski, L. A. C. Lopes and F. D. Reis. “A single-switch three-phase boost rectifier to reduce the generator losses in wind energy conversion systems,” in Proc. IEEE EPEC, 2009, pp. 1-8.
[23] N. B. H. Youssef, F. Fnaiech and K. Al-Haddad, “Small signal modeling and control design of a three-phase AC/DC Vienna converter,” in Proc. IEEE IECON, 2003, vol. 1, pp.656-661.
[24] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal of three-phase three level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008.
[25] H. Chen, N. David and D. C. Aliprantis, “Analysis of permanent-magnet synchronous generator with Vienna rectifier for wind energy conversion system,” IEEE Trans. Sustain. Energy, vol. 4, no. 1, pp. 154-163, 2013.
[26] A. Rajaei, M. Mohamadian and A. Y. Varjani, “Vienna-rectifier-based direct torque control of PMSG for wind energy application,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2919-2929, 2013.
[27] T. Friedli, M. Hartmann and J. W. Kolar, “The essence of three-phase PFC rectifier systems—Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
D. Wind Turbine Emulators
[28] L. A. C. Lopes, J. Lhuilier, A. Mukherjee and M. F. Khokhar, “A wind turbine emulator the represents the dynamics of the wind turbine rotor and drive train lopes,” in Proc. IEEE PESC, 2005, pp. 2092-2097.
[29] J. M. Nye, J. G. de la Bat, M. A. Khan and P. Barendse, “Design and implementation of a variable speed wind turbine emulator,” in Proc. IEEE ICEM, 2012, pp. 2060-2065.
[30] S. Kouadria, S. Belfedhal, Y. Meslem and E. M. Berkouk, “Development of real time wind turbine emulator based on DC motor controlled by hysteresis regulator,” in Proc. IRSEC, 2013, pp. 246-250.
[31] M. Arifujjaman, M. T. Iqbal and J. E. Quaicoe, “An isolated small wind turbine emulator,” in Proc. CCECE, 2006, pp. 1854-1857.
[32] L. Peretti, V. Sarkimaki and J. Faber, “Wind turbine emulator for generator control algorithm development,” in Proc. IEEE ICIT, 2013, pp. 228-233.
[33] G. Henz, G. Koch, C. M. Franchi and H. Pinheiro, “Development of a variable speed wind turbine emulator for research and training,” in Proc. COBEP, 2013, pp. 737-742.
[34] S. Tammaruckwattana and K. Ohyama, “Experiment verification of variable wind speed power generation system using permanent magnet synchronous generator by wind turbine emulator,” in Proc. IEEE IES, 2012, pp. 5827-5832.
[35] J. Vaheeshan, V. Vihirthanath, S. G. Abeyaratne, A. Atputharajah and G. Ramatharan, “Wind turbine emulator,” in Proc. IEEE ICIIS, 2011, pp. 511-516.
[36] N. Muntean, L. Tutelea, D. Petrila, and O. Pelan, “Hardware in the loop wind turbine emulator,” in Proc. IEEE ACEMP, 2011, pp. 53-58.
[37] D. Llano, M. Tatlow and R. McMahon, “Control algorithm for permanent magnet generators evaluated on a wind turbine emulator test-rig,” in Proc. IET PEMD, 2014, pp.1-7.
E. Maximum Power Point Tracking Method
[38] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, 2005.
[39] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486-494, 2006.
[40] Y. Zou, M. E. Elbuluk and Y. Sozer, “Stability analysis of maximum power point tracking (mppt) method in wind power systems,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1129-1136, 2013.
[41] R. Vepa, “Nonlinear, Optimal Control of a Wind Turbine Generator,” IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 468-478, 2011.
[42] Y. Xia, K. H. Ahmed and B.W. Williams, “A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3609-3620, 2011.
[43] Z. M. Dalala, Z. U. Zahid, W. S. Yu and Y. H. Cho, “Design and analysis of an MPPT technique for small-scale wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 756-767, 2013.
F. Permanent-Magnet Synchronous Motor Drives
Motor analysis and design
[44] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw, Inc., 1994.
[45] R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, New Jersey: Prentice Hall, Inc., 2001.
[46] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002.
[47] Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 118-124, 2007.
[48] P. C. Sen, Principles of Electric Machines and Power Electronics, New York: John Wiley and Sons, 2013.
[49] D. Zarko, D. Ban and T. A. Lipo, “Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance,” IEEE Trans. Magn., vol. 42, no. 7, pp. 1828-1837, 2006.
[50] M. Sanada and S. Morimoto, “Efficiency improvement in high speed operation using slot-less configuration for permanent magnet synchronous motor,” in Proc. IEEE Power Engineering, 2007, vol. 1, no. 1, pp. 1-7.
[51] G. Sooriyakumar, R. Perryman and S. J. Dodds, “Cogging analysis for fractional slot/pole permanent magnet synchronous motors,” in Proc. UPEC, 2007, pp. 188-191.
[52] R. Islam, I. Husain, A. Fardoun and K. McLaughlin, “Permanent-magnet synchronous motor magnet designs with skewing for torque tipple and cogging torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, 2009.
[53] M. Franko, J. Ondrejicka and J. Kuchta, “Development and examination of interior permanent magnet synchronous traction Motor,” in Proc. ELEKTRO, 2012 pp. 179-184.
[54] S. Chaithongsuk, B. Nahid-Mobarakeh, J. Caron, N. Takorabet and F. Meibody-Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484 - 2494, 2012
[55] S. Morimoto, O. Shohei, Y. Inoue, M. Sanada, “Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5749-5756, 2014.
Equivalent circuit modeling and parameter estimation
[56] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, Part I: The permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
[57] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
[58] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 645-650, 2002.
[59] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
[60] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
[61] M. C.Chou, C. M. Liaw, S. B.Chien, F. H. Shieh, J. R. Tsai, H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 58-74, 2011.
[62] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for an SPMSM-driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, 2011.
[63] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
Current control
[64] B. K. Bose, “An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system,” IEEE Trans. Ind. Electron., vol. 37, no. 5, pp. 402-408, 1990.
[65] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[66] A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881.
[67] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[68] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000.
[69] M. C. Chou and C. M. Liaw, “Development of robust current two-degrees- of-freedom controllers for permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
[70] H. L. Huy, K. Slimani and P. Viarouge, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” in Proc. IEEE IAS, 1991, vol. 1, no. 28, pp. 996-1002.
[71] H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
[72] J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495-503, 2007.
[73] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
Speed control
[74] S. Li and Z. Liu, “Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3050-3059, 2009.
[75] M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive speed control for vector controlled permanent magnet synchronous motor drive,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 618-623.
[76] Y. A. R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, 2006.
[77] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009.
[78] A. Sabanovic and F. Bilalovic, “Sliding mode control of AC drives,” IEEE Trans. Ind. Appl., vol. 25, no. 1, pp. 70-75, 1989.
[79] B. Singh, B. P. Singh and S. Dwivedi, “DSP based implementation of sliding mode speed controller for direct torque controlled PMSM drive,” in Proc. IEEE ICIT, 2006, pp. 1301-1308.
[80] M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
[81] M. A. Rahman, D.M. Vilathgamuwa, M.N. Uddin and K. J. Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 408-416, 2003.
[82] K. H. Kim and M. J. Youn, “A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 524-535, 2002.
[83] S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear controller design for a permanent magnet synchronous motor,” in Proc. IEEE IEMDC, 2007, vol. 1, pp. 776-780.
[84] R. Errouissi, M. Ouhrouche, W. H. Chen and A. M. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2849-2858, 2012.
[85] I. C. Baik, K. H. Kim and M. J. Youn, “Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique,” IEEE Trans. Control Syst. Technol., vol. 8, no. 1, pp. 47-54, 2000.
[86] E. J. Fuentes, C. Silva, D. E. Quevedo and E. I. Silva, “Predictive speed control of a synchronous permanent magnet motor,” in Proc. IEEE ICIT, 2009, pp. 1-6.
[87] H. Liu and S. Li, “Speed control for PMSM servo system using predictive functional control and extended state observer,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1171-1183, 2012.
[88] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 1007-1015, 2013.
[89] T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet synchronous motor drive based on neuro-fuzzy approach,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 602-606.
[90] M. N. Uddin, M. A. Abido and M. A. Rahman, “Development and implementation of a hybrid intelligent controller for interior permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 68-79, 2004.
[91] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
Commutation
[92] F. Aghili, M. Buehler and J. M. Hollerbach, “Optimal commutation laws in the frequency domain for PM synchronous direct-drive motors,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1056-1064, 2000.
[93] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
[94] G. H. Jang and M. G. Kim, “Optimal commutation of a BLDC motor by utilizing the symmetric terminal voltage,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3473-3475, 2006.
Field-weakening control
[95] W. L. Soong and T. J. E. Miller, “Field-weakening performance of brushless synchronous AC motor drives,” in Proc. IEE EPA, 1994, vol. 141, no. 6, pp. 331-340.
[96] S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Trans. Ind. Appl., vol. 30, no. 4, pp. 920-926, 1994.
[97] D. S. Maric, S. Hiti, C. C. Stancu and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet synchronous machine drives employing space vector modulation,” in Proc. IEEE IECON, 1998, vol. 1, pp. 508-512.
[98] G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619-1627, 2009.
Voltage boosting and pulse amplitude modulation
[99] F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 607-614, 2004.
[100] W. Zhigan, G. Zhou and Y. Jianping, “Line adaptive PAM & PWM drive for BLDCM,” in Proc. IEEE IPEMC, 2004, vol. 3, pp. 1263-1267.
[101] K. Taniguchi, S. Saegusa and T. Morizane, “PAM inverter system with soft-switching PFC converter suitable for PM motor drive,” in Proc. IEEE PEDS, 2006, vol. 1, pp. 793-798.
[102] A. Kawahashi, “A new-generation hybrid electric vehicle and its supporting power semiconductor devices,” in Proc. ISPSD, 2004, pp. 23-29.
[103] M. C. Chou and C. M. Liaw, “PMSM-driven satellite reaction wheel system with adjustable DC-link voltage,” to appear in IEEE Trans. Aerosp. Electron. Syst., 2014.
G. Others
[104] “TMS320F2812 digital signal processors data manual,” http://www.ti.com/lit/ds/ symlink/tms320f2812.pdf
[105] “TMS320F28335 digital signal processors data manual,” http://www.ti.com/lit/ds/ symlink/tms320f28335.pdf
[106] M. H. Lee, “Estimated back-EMF based position sensorless interior permanent magnet synchronous motor drive,” M.S. Thesis, Department of Electric Engineering, National Tsing Hua Univ., Taiwan, R.O.C., 2008.
[107] J. H. Huang, “A position sensorless permanent-magnet synchronous motor drive using signal injection,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *