|
A. Energy Storage Devices and Systems [1]J. Cao and A. Emadi, “Batteries needs electronics,” IEEE Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011. [2]A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, 2005. [3]A. F. Burke, “Batteries and ultracapacitors for electric, hybrid and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, pp. 806-820, 2007. [4]H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009. [5]W. F. Infante, A. F. Khan, N. J. C. Libatique, G. L. Tangonan and S. N. Y. Uy, “Performance evaluation of series hybrid and pure electric vehicles using lead-acid batteries and supercapacitors,” in Proc. IEEE TENCON, 2012, pp.1-5. [6]M. Neenu and S. Muthukumaran, “A battery/ultracapacitor hybrid energy storage system in electric vehicles,” in Proc. IEEE ICAESM, 2012, pp. 731-735. [7]J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012. [8]A. Ostadi and S. K. Chen, “Hybrid energy storage system (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” in Proc. IEEE ITEC, 2013, pp. 1-7. [9]K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013. [10]K. W. Hu and C. M. Liaw, “On a bidirectional adapter with G2B charging and B2X emergency discharging functions,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 243-257, Jan. 2014. [11]Y. Ito, Y. Zhongqing and H. Akagi, “DC microgrid based distribution power generation system,” in Proc IEEE IPEMC, 2004, pp. 1740-1745. [12]D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp. 1369-1380. [13]Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011. [14]A. Kramer, S. Chakraborty and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283. [15]W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505, May 2012. [16]M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5673-5689, 2013. [17]M. C. Kisacikoglu, B. Ozpineci and L. M. Tolbert, “Effects of V2G reactive power compensation on the component selection in an EV or PHEV bidirectional charger,” in Proc. IEEE ECCE, 2010, pp. 870-876. [18]W. Su, H. Eichi, W. Zeng and M. Y. Chow, “A survey on the electrification of transportation in a smart grid environment,” IEEE Trans. Ind. Info., vol. 8, no. 1, pp. 1-10, 2012. [19]Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid., vol. 3, no. 1, pp. 559-564, 2012. [20]M. Sechilariu, W. Baochao and F. Locment, “Building integrated photovoltaic system with energy storage and smart grid communication,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1607-1618, 2013. [21]N. Kawakami and Y. Iijima, “Overview of battery energy storage systems for stabilization of renewable energy in Japan,” in Proc. IEEE ICRERA, 2012, pp. 1-5. [22]C. M. Liaw and S. J. Chiang, “Design and implementation of a single-phase three-wire transformerless battery energy storage system,” IEEE Trans. Ind Electron., vol. 41, no. 5, pp. 540-549, 1994. [23]S. J. Chiang, S. C. Hwang and C. M. Liaw, “Three-phase multi-functional battery energy storage system,” IEE Proceedings-Electric Power Applications, vol. 142, no. 4, pp. 275-284, 1995. [24]S. J. Chiang, C. M. Liaw, W. C. Chang and W. Y. Chang, “Multi-module parallel small battery energy storage system,” IEEE Trans. Energy Conversion, vol. 11, no. 1, pp. 146-154, 1996. B. Interleaved DC/DC Converters and Isolated Converters [25]N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003. [26]F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892. [27]F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, vol. 1, 1998, pp. 287-293. [28]T. A. Burress, S. L. Campbell, C. L. Coomer, C. W. Ayers, A. A. Wereszczak, J. P. Cunningham, L. D. Marlino, L. E. Seiber and H. T, “Evaluation of the 2010 toyota prius hybrid synergy driver system,” Technical Report ORNL/TM-2010/253, 2010. [29]J. W. Dai, “A battery energy storage system with auxiliary charging source for DC micro-grid and electric vehicle to perform grid-connected operation,” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2012. [30]C. H. Cheng, “A Multi-functional battery energy storage system with multiple auxiliary charging sources,” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2013. [31]L. T. Jakobsen, O. Garcia, J. A. Oliver, P. Alou, J. A. Cobos and M. A. E. Andersen, “Interleaved buck converter with variable number of active phases and a predictive current sharing scheme,” in Proc. IEEE PESC, 2008, pp. 3360-3365. [32]H. Kim, M. Falahi, T. M. Jahns and M. Degner, “Inductor current measurement and regulation using a single DC link current sensor for interleaved DC-DC converters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1503-1510, 2011. [33]J. C. Schroeder, M. Petersen and F. W. Fuchs, “One-sensor current sharing in multiphase interleaved DC/DC converters with coupled inductors,” in Proc. IEEE EPE/PEMC, 2012, pp. DS3c.1-1- DS3c.1-7. [34]J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” in Proc. IEEE APEC’01, 2001, pp. 605-609. [35]G. Koo, G. Moon and M. Youn, “New zero-voltage-switching phase-shift full-bridge converter with low conduction losses,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 228-235, 2005. [36]J. A. Claassens and I. W. Hofsajer, “A flux balancer for phase shift ZVS DC-DC converters under transient conditions,” in Proc. APEC, 2006, pp. 523-527. [37]X. Li and A. K. S. Bhat, “Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 850-862, 2010. [38]T. Jimichi, H. Fujita and H. Akagi, “A dynamic voltage restorer equipped with a high-frequency isolated DC-DC converter,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp.169-175, 2011. [39]G. Ivensky, S. Bronshtein and A. Abramovitz, “Approximate analysis of resonant LLC DC-DC converter,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3274-3284, 2011. [40]S. Zeljkovic, T. Reiter and D. Gerling, “Analysis of rectifier topologies for automotive HV to LV phase shift ZVT DC/DC converter,” in Proc IEEE EPE&PEMC, 2012, vol. 4, no. 6, pp. DS1b.4-1- DS1b.4-7. [41]F. Musavi, M. Craciun, D. S. Gautam, W. Eberle and W. G. Dunford, “An LLC resonant DC-DC converter for wide output voltage range battery charging applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5437- 5445, 2013. [42]M. Pahlevaninezhad, H. Danesh-Pajooh, A. Bakhshai and P. Jain, “A load/line adaptive zero voltage switching DC/DC converter used in electric vehicles,” in Proc IEEE ECCE, 2013, pp. 15-19. [43]S. Inoue and H. Akagi, “Voltage control of a bi-directional isolated DC/DC converter for medium-voltage motor drives,” in Proc IEEE PCC, 2007, vol. 2, no. 5, pp.1244-1250. [44]C. Zhao, S. D. Round and J. W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443-2453, 2008. [45]U. R. Prasanna and A. K. Rathore, “Extended range ZVS active-clamped current-fed full-bridge isolated DC/DC converter for fuel cell applications: analysis, design, and experimental results,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2661-2672, 2013. C. PWM Inverters and Some Key Issues [46]Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004. [47]Y. Chen and K. Smedley, “Three-phase boost-type grid-connected inverter,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2301-2309, 2008. [48]B. Vafakhah, J. Salmon and A. M. Knight, “Interleaved discontinuous space-vector PWM for a multilevel PWM VSI using a three-phase split-wound coupled inductor,” IEEE Trans. Ind. Appl., vol. 46, no. 5, pp. 2015-2024, 2010. [49]F. Botteron, R. Carballo, R. Nunez, A. Quintana and G. Fernandez, “High reliability and performance PWM inverter for standalone microgrids,” IEEE Trans. Latin America., vol. 11, no. 1, pp. 505-511, 2013. [50]W. Fei, J. L. Duarte and M. A. M. Hendrix, “Grid-interfacing converter systems with enhanced voltage quality for microgrid application: Concept and implementation,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 350-3513, 2011. [51]H. Valderrama-Blavi, J. M. Bosque, F. Guinjoan, L. Marroyo and L. Martinez- Salamero, “Power adaptor device for domestic DC-microgrids based on commercial MPPT inverters,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp.1191-1203, 2013. [52]J. Holtz, “Pulse width modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992. [53]S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547-1559, 2007. [54]V. Blasko, “A novel method for selective harmonic elimination in power electronic equipment,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 223-228, 2007. [55]M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998. [56]B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proc. Elect. Power Appl., vol. 148, no. 6, pp. 503-512, 2001. [57]C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” in Proc. IEEE PESC, 2001, vol. 2, pp. 17-21. [58]Y. Kobayashi and H. Funato, “Current control method based on hysteresis control suitable for single-phase active filter with LC output filter,” in Proc. EPE-PEMC, 2008, pp. 479-484. [59]M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of-freedom controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009. [60]F. Barrero, M. R. Arahal, R. Gregor, S. Toral and M. J. Duran, “One-step modulation predictive current control method for the asymmetrical dual three-phase induction machine,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1974-1983, 2009. [61]S. W. Mohod and M. V. Aware, “Micro wind power generator with battery energy storage for critical load,” IEEE Syst. J., vol. 6, no. 1, pp. 118-125, 2012. [62]Y. Sunjae, O. Hyeongmin and C. Sewan, “Controller design and implementation of indirect current control based utility-interactive inverter system,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 26-30, 2013. [63]M. Castilla, J. Miret, A. Camacho, J. Matas and L. G. Vicuna, “Reduction of current harmonic distortion in three-phase grid-connected photovoltaic inverters via resonant current control,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1464-1472, 2013. [64]F. G. Espin, I. Patrao, E. Figueres and G. Garcera, “An adaptive digital control technique for improved performance of grid connected inverters,” IEEE Trans. Ind. Info., vol. 9, no. 2, pp. 708-718, 2013. [65]A. Sato and T. Noguchi, “Voltage-source PWM rectifier-inverter based on direct power control and its operation characteristics,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1559-1567, 2011. [66]J. R. Fischer, S. A. Gonzalez, I. Carugati, M. A. Herran, M. G. Judewicz and D. O. Carrica, “Robust predictive control of grid-tied converters based on direct power control,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5634-5643, 2014. [67]A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2295-2304, 2007. [68]D. Limon, M. Pomar, J. E. Normey-Rico, T. L. M. Santos and E. F. Camacho, “Robust design of dead-time compensator controllers for constrained non-linear systems,” IEEE CDC-ECC., pp. 2022-2027, 2011. [69]F. Chierchie, L. Stefanazzi, E. E. Paolini and A. R. Oliva, “Frequency analysis of PWM inverters with dead-time for arbitrary modulating signals,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2850-2860, 2014. [70]P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” in Proc. IEEE PEDS, vol. 2, 1995, pp. 571-576. [71]T. G. Habetler, R. Naik and T. A. Nondahl, “Design and implementation of an inverter output LC filter used for dv/dt reduction,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 327-331, 2002. [72]A. Houari, H. Renaudineau, J. P. Martin, S. Pierfederici and F. M. Tabar, “Flatness-based control of three-phase inverter with output filter,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2890-2897, 2012. [73]I. S. Mohamed, S. A. Zaid, H. M. Elsayed and M. F. A. Elyazeed, “Three-phase inverter with output LC filter using predictive control for UPS applications,” in Proc. IEEE CoDIT, 2013, pp. 489-494. [74]Q. C. Zhong and T. Hornik, “Cascaded current-voltage control to improve the power quality for a grid-connected inverter with a local load,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1344-1355, 2013. [75]M. Shahparasti, M. Mohamadian, A. Yazdin, A. A. Ahmad and M. Amini, “Derivation of a stationary-frame single-loop controller for three-phase standalone inverter supplying nonlinear loads,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 5063-5071, 2014. [76]P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993. [77]F. Blaabjerg, D. Neacsu and J. K. Pedersen, “Adaptive SVM to compensate DC-link voltage ripple for component minimized voltage source inverters,” in Proc. IEEE PESC, vol. 1, 1997, pp. 580-589. [78]P. Hui, M. Hagiwara and H. Akagi, “Modeling and analysis of switching-ripple voltage on the DC link between a diode rectifier and a modular multilevel cascade inverter (MMCI),” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 75-84, 2013. [79]J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in sinusoidal wave inverter,” in Proc. IEEE IPEMC, vol. 3, 2000, pp. 1122-1126. [80]M. Li and Y. Xing, “Digital voltage regulation with flux balance control for sine wave inverters,” in Proc. IEEE APEC, vol. 3, 2004, pp. 1709-1713. D. Switch Mode Rectifiers [81]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004. [82]H. Mao, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997. [83]J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems-Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013. [84]T. Friedli, M. Hartmann, J. W. Kolar, “The essence of three-phase PFC rectifier systems-PartⅡ,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014. [85]R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” in Proc. IEEE APEC, vol. 2, 1997, pp. 895-901. [86]J. Yungtaek and M. M. Jovanovic, “A comparative study of single-switch three-phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, 1998. [87]J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010. [88]D. S. Oliverira, L. Barreto, F. Antunes, M. Silva, D. L. Queiroz and A. R. Rangel, “A DCM three-phase high frequency semi-controlled rectifier feasible for power WECS based on a permanent magnet generator,” in Proc. IEEE COBEP, 2009, pp. 1193-1199. [89]D. S. Oliverira, L. Barreto, F. Antunes, M. Silva, D. L. Queiroz and A. R. Rangel, “A DCM three-phase high frequency semi-controlled rectifier feasible for power WECS based on a permanent magnet generator,” in Proc. IEEE COBEP, 2009, pp. 1193-1199. [90]H. Kanaan, K. Al-Haddad, R. Chaffai, L. Duguay and F. Fnaiech, “A new low-frequency state model of a three-phase three-switch three-level fixed-frequency PWM rectifier,” in Proc. IET INTELEC, 2001, pp. 384-391. [91]N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal model of three-phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008. [92]B. Tamyurek, A. Ceyhan, E. Birdane and F. Keles, “A simple DSP based control system design for a three-phase high power factor boost rectifier,” in Proc. IEEE APEC, 2008, pp. 1416-1422. [93]C. Lujie, W. L. Soong, M. Pathmanathan and N. Ertugrul, “Comparison of AC/DC converters and the principles of a new control strategy in small-scale wind turbine systems,” in Proc IEEE AUPEC, 2012, vol. 1, no. 6, pp. 26-29. [94]S. A. Zabalawi, G. Mandic and A. Nasiri, “Utilizing energy storage with PV for residential and commercial use,” in Proc. IEEE Conf. Ind. Electron., pp. 1045-1050, 2008. [95]X. Li, L. Lopes and S. Williamson, “On the suitability of plug-in hybrid electric vehicle (PHEV) charging infrastructures based on wind and solar energy,” in Proc. IEEE PES., pp. 1-8, 2009. [96]C. Hamilton, G. Gamboa, J. Elmes, R. Kerley, A. Arias, M. Pepper, J. Shen and I. Batarseh, “System architecture of a modular direct-DC PV charging station for plug-in electric vehicles,” in Proc. IEEE IECON. Soc., pp. 2516-2520, 2010. [97]Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011. [98]S. W. Mohod and M. V. Aware, “Micro wind power generator with battery energy storage for critical load,” IEEE Syst. J., vol. 6, no. 1, pp. 118-125, 2012. [99]J. Traube, F. Lu and D. Maksimovic, “Electric vehicle DC charger integrated within a photovoltaic power system,” in Proc. IEEE Appl. Power Electron., pp. 352-358, 2012. [100]V. de la Fuente, C. L. T. Rodriguez, G. Garcera, E. Figueres and R. O. Gonzalez, “Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities,” IEEE Trans. Ind Electron., vol. 60, no. 4, pp. 1571-1581, 2013. [101]K. Strunz, E. Abbasi and Duc Nguyen Huu, “DC microgrid for wind and solar power integration,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 1, pp. 115-126, 2014. E. Others [102]“Digital signal controller TMS320F2812 datasheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f2812.pdf, 2013,7,30. [103]“Digital signal controller TMS320F28335 datasheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, 2013,7,30. [104]“Digital signal controller TMS320F28069 datasheet,” Available: http://datasheet. elcodis.com/pdf/21/97/219781/tmdxcncd28069.pdf, 2013,7,30. [105]R. C. Dugan, M. F. McGranaghan, S. Santoso and H. W. Beaty, Electrical Power Systems Quality, 2nd ed., New York: McGraw-Hill, 2003. [106]A. Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Del., vol. 16, no. 8, pp. 782-790, 2001. [107]T. M. Blooming, D. J. Carnovale, “Application of IEEE STD 519-1992 Harmonic Limits,” in Proc. IEEE Pulp and Paper Industry Technical Conference, 2006, pp. 1-9.
|