帳號:guest(3.141.37.40)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭聖傑
作者(外文):PENG, SHENG-JIE
論文名稱(中文):具插入式能源收集之蓄電池儲能系統
論文名稱(外文):A BATTERY ENERGY STORAGE SYSTEM WITH PLUG-IN ENERGY HARVESTING
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):王醴
龔應時
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061503
出版年(民國):103
畢業學年度:102
語文別:中文英文
論文頁數:161
中文關鍵詞:蓄電池儲能系統變頻器介面轉換器切換式整流器單電流感測微電網輔助充電器連網操控獨立操控
外文關鍵詞:BESSinverterinterface converterSMRsingle current sensingmicro-gridauxiliary chargergrid-connected operationautonomous operation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:198
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
本論文旨在開發一具多交流和直流電源插入式能源收集之連網蓄電池儲能系統,所有控制均採用數位訊號處理器實現。
在所建蓄電池儲能系統中,其連網變頻器直流鏈電壓由蓄電池經一雙向交錯式直流/直流轉換器升壓調控建立之,並聯轉換器之電流模式控制僅採用感測之直流鏈單一電流。至於變頻器,在相域妥當設計之電流控制機構,使其在儲能系統、負載和電網間具良好之功率調控能力。除負載虛功及諧波功之補償外,所建蓄電池儲能系統可安排從事三種操作模式:(i) 電池至電網放電模式:蓄電池儲能系統供電給區域負載,並回送規畫之功率至電網;(ii) 電網至電池充電模式:電網供電給區域負載,並對蓄電池充電;(iii) 浮接模式:所有負載的實功率由電網提供。當在電網故障時,蓄電池儲能系統切離電網,於獨立操作模式下對負載供電。
為有效利用可能取得之再生能源、分散式能源或備用能源,本論文開發插入式能源收集系統以對電池進行輔助充電。所提供之兩種能源收集路徑為:(i) 三相電源經由後接之三相無橋式切換式整流器。由適當安排,除風力發電機和備用三相交流電源外,單相交流源或直流源也可輸入;(ii) 交錯式降-升壓轉換器承接直流電源。所收集之能源可經由兩種路徑對電池進行充電和對蓄電池儲能系統提供能源補充:(i) 經由一降壓轉換器直接對電池充電;(ii) 經由一隔離型共振式直流/直流轉換器接至蓄電池儲能系統之直流鏈。此外,微電網及電動車輛亦可接至本蓄電池儲能系統,執行換能互連操作。
This thesis is mainly concerned with the development of a grid-connected three-phase battery energy storage systems (BESS) having plug-in energy harvesting from various AC and DC sources. All controls are digitally realized using digital signal processor (DSP).
In the developed BESS, the DC-link voltage of grid-connected inverter is established from the battery bank via an interleaved bidirectional DC/DC converter with two modules. The DC-link single current sensing technique is applied for successfully conducting the current-mode controls of parallel converters. As to the inverter, the properly designed current control schemes in phase domain makes it possess good power conditioning control capability between BESS, local load and utility grid. In addition to the load reactive and harmonic power compensations, the proposed BESS is arranged to perform the following three modes: (i) Battery-to-grid (B2G) discharging mode: the BESS provides all load powers and sends the preset real power to the utility grid; (ii) Grid-to-battery (G2B) charging mode: the utility grid supplies all load real powers and charges the battery bank; (iii) Floating mode: all load real powers are supplied by utility grid. As the utility grid failure occurs, the BESS is isolated from utility grid and operated in battery-to-home (B2H) mode for supplying uninterruptible power to the load.
To effectively utilize the possible renewable, distributed and backup energy, the plug-in energy harvesting system is developed to make the battery auxiliary charging. Two energy harvesting paths are provided: (i) Three-phase source followed by three-phase bridgeless discontinuous-current mode (DCM) switch-mode rectifier (SMR). Through proper arrangement, in addition to wind AC generators and three-phase back-up AC sources, the single-phase AC source or DC source can also be the harvesting inputs; (ii) DC source followed by interleaved buck-boost DC/DC converter. The harvested energies can perform the battery charging and the energy support to the BESS via two possible channels, namely: (i) Direct charging the battery via a buck DC/DC converter; and (ii) Through an isolated resonant DC/DC converter to the common DC-link of the BESS. The bidirectional interconnected operations between the developed BESS and the micro-grid (B2M/M2B) as well as the BESS and the electric vehicle (B2V/V2B) can also be applicable.
致謝
摘要
目錄
第一章、簡介
第二章、綠能與儲能系統之基本事務
第三章、蓄電池介面轉換器
第四章、三相變頻器之開發與功率調節控制
第五章、插入式能源收集系統
第六章、整體性能測試
第七章、結論
附錄:英文論文


A. Energy Storage Devices and Systems
[1]J. Cao and A. Emadi, “Batteries needs electronics,” IEEE Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
[2]A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, 2005.
[3]A. F. Burke, “Batteries and ultracapacitors for electric, hybrid and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, pp. 806-820, 2007.
[4]H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[5]W. F. Infante, A. F. Khan, N. J. C. Libatique, G. L. Tangonan and S. N. Y. Uy, “Performance evaluation of series hybrid and pure electric vehicles using lead-acid batteries and supercapacitors,” in Proc. IEEE TENCON, 2012, pp.1-5.
[6]M. Neenu and S. Muthukumaran, “A battery/ultracapacitor hybrid energy storage system in electric vehicles,” in Proc. IEEE ICAESM, 2012, pp. 731-735.
[7]J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
[8]A. Ostadi and S. K. Chen, “Hybrid energy storage system (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” in Proc. IEEE ITEC, 2013, pp. 1-7.
[9]K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.
[10]K. W. Hu and C. M. Liaw, “On a bidirectional adapter with G2B charging and B2X emergency discharging functions,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 243-257, Jan. 2014.
[11]Y. Ito, Y. Zhongqing and H. Akagi, “DC microgrid based distribution power generation system,” in Proc IEEE IPEMC, 2004, pp. 1740-1745.
[12]D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp. 1369-1380.
[13]Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011.
[14]A. Kramer, S. Chakraborty and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
[15]W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505, May 2012.
[16]M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5673-5689, 2013.
[17]M. C. Kisacikoglu, B. Ozpineci and L. M. Tolbert, “Effects of V2G reactive power compensation on the component selection in an EV or PHEV bidirectional charger,” in Proc. IEEE ECCE, 2010, pp. 870-876.
[18]W. Su, H. Eichi, W. Zeng and M. Y. Chow, “A survey on the electrification of transportation in a smart grid environment,” IEEE Trans. Ind. Info., vol. 8, no. 1, pp. 1-10, 2012.
[19]Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid., vol. 3, no. 1, pp. 559-564, 2012.
[20]M. Sechilariu, W. Baochao and F. Locment, “Building integrated photovoltaic system with energy storage and smart grid communication,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1607-1618, 2013.
[21]N. Kawakami and Y. Iijima, “Overview of battery energy storage systems for stabilization of renewable energy in Japan,” in Proc. IEEE ICRERA, 2012, pp. 1-5.
[22]C. M. Liaw and S. J. Chiang, “Design and implementation of a single-phase three-wire transformerless battery energy storage system,” IEEE Trans. Ind Electron., vol. 41, no. 5, pp. 540-549, 1994.
[23]S. J. Chiang, S. C. Hwang and C. M. Liaw, “Three-phase multi-functional battery energy storage system,” IEE Proceedings-Electric Power Applications, vol. 142, no. 4, pp. 275-284, 1995.
[24]S. J. Chiang, C. M. Liaw, W. C. Chang and W. Y. Chang, “Multi-module parallel small battery energy storage system,” IEEE Trans. Energy Conversion, vol. 11, no. 1, pp. 146-154, 1996.
B. Interleaved DC/DC Converters and Isolated Converters
[25]N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
[26]F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
[27]F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, vol. 1, 1998, pp. 287-293.
[28]T. A. Burress, S. L. Campbell, C. L. Coomer, C. W. Ayers, A. A. Wereszczak, J. P. Cunningham, L. D. Marlino, L. E. Seiber and H. T, “Evaluation of the 2010 toyota prius hybrid synergy driver system,” Technical Report ORNL/TM-2010/253, 2010.
[29]J. W. Dai, “A battery energy storage system with auxiliary charging source for DC micro-grid and electric vehicle to perform grid-connected operation,” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2012.
[30]C. H. Cheng, “A Multi-functional battery energy storage system with multiple auxiliary charging sources,” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2013.
[31]L. T. Jakobsen, O. Garcia, J. A. Oliver, P. Alou, J. A. Cobos and M. A. E. Andersen, “Interleaved buck converter with variable number of active phases and a predictive current sharing scheme,” in Proc. IEEE PESC, 2008, pp. 3360-3365.
[32]H. Kim, M. Falahi, T. M. Jahns and M. Degner, “Inductor current measurement and regulation using a single DC link current sensor for interleaved DC-DC converters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1503-1510, 2011.
[33]J. C. Schroeder, M. Petersen and F. W. Fuchs, “One-sensor current sharing in multiphase interleaved DC/DC converters with coupled inductors,” in Proc. IEEE EPE/PEMC, 2012, pp. DS3c.1-1- DS3c.1-7.
[34]J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” in Proc. IEEE APEC’01, 2001, pp. 605-609.
[35]G. Koo, G. Moon and M. Youn, “New zero-voltage-switching phase-shift full-bridge converter with low conduction losses,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 228-235, 2005.
[36]J. A. Claassens and I. W. Hofsajer, “A flux balancer for phase shift ZVS DC-DC converters under transient conditions,” in Proc. APEC, 2006, pp. 523-527.
[37]X. Li and A. K. S. Bhat, “Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 850-862, 2010.
[38]T. Jimichi, H. Fujita and H. Akagi, “A dynamic voltage restorer equipped with a high-frequency isolated DC-DC converter,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp.169-175, 2011.
[39]G. Ivensky, S. Bronshtein and A. Abramovitz, “Approximate analysis of resonant LLC DC-DC converter,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3274-3284, 2011.
[40]S. Zeljkovic, T. Reiter and D. Gerling, “Analysis of rectifier topologies for automotive HV to LV phase shift ZVT DC/DC converter,” in Proc IEEE EPE&PEMC, 2012, vol. 4, no. 6, pp. DS1b.4-1- DS1b.4-7.
[41]F. Musavi, M. Craciun, D. S. Gautam, W. Eberle and W. G. Dunford, “An LLC resonant DC-DC converter for wide output voltage range battery charging applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5437- 5445, 2013.
[42]M. Pahlevaninezhad, H. Danesh-Pajooh, A. Bakhshai and P. Jain, “A load/line adaptive zero voltage switching DC/DC converter used in electric vehicles,” in Proc IEEE ECCE, 2013, pp. 15-19.
[43]S. Inoue and H. Akagi, “Voltage control of a bi-directional isolated DC/DC converter for medium-voltage motor drives,” in Proc IEEE PCC, 2007, vol. 2, no. 5, pp.1244-1250.
[44]C. Zhao, S. D. Round and J. W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443-2453, 2008.
[45]U. R. Prasanna and A. K. Rathore, “Extended range ZVS active-clamped current-fed full-bridge isolated DC/DC converter for fuel cell applications: analysis, design, and experimental results,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2661-2672, 2013.
C. PWM Inverters and Some Key Issues
[46]Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[47]Y. Chen and K. Smedley, “Three-phase boost-type grid-connected inverter,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2301-2309, 2008.
[48]B. Vafakhah, J. Salmon and A. M. Knight, “Interleaved discontinuous space-vector PWM for a multilevel PWM VSI using a three-phase split-wound coupled inductor,” IEEE Trans. Ind. Appl., vol. 46, no. 5, pp. 2015-2024, 2010.
[49]F. Botteron, R. Carballo, R. Nunez, A. Quintana and G. Fernandez, “High reliability and performance PWM inverter for standalone microgrids,” IEEE Trans. Latin America., vol. 11, no. 1, pp. 505-511, 2013.
[50]W. Fei, J. L. Duarte and M. A. M. Hendrix, “Grid-interfacing converter systems with enhanced voltage quality for microgrid application: Concept and implementation,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 350-3513, 2011.
[51]H. Valderrama-Blavi, J. M. Bosque, F. Guinjoan, L. Marroyo and L. Martinez- Salamero, “Power adaptor device for domestic DC-microgrids based on commercial MPPT inverters,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp.1191-1203, 2013.
[52]J. Holtz, “Pulse width modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
[53]S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547-1559, 2007.
[54]V. Blasko, “A novel method for selective harmonic elimination in power electronic equipment,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 223-228, 2007.
[55]M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[56]B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proc. Elect. Power Appl., vol. 148, no. 6, pp. 503-512, 2001.
[57]C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” in Proc. IEEE PESC, 2001, vol. 2, pp. 17-21.
[58]Y. Kobayashi and H. Funato, “Current control method based on hysteresis control suitable for single-phase active filter with LC output filter,” in Proc. EPE-PEMC, 2008, pp. 479-484.
[59]M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of-freedom controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
[60]F. Barrero, M. R. Arahal, R. Gregor, S. Toral and M. J. Duran, “One-step modulation predictive current control method for the asymmetrical dual three-phase induction machine,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1974-1983, 2009.
[61]S. W. Mohod and M. V. Aware, “Micro wind power generator with battery energy storage for critical load,” IEEE Syst. J., vol. 6, no. 1, pp. 118-125, 2012.
[62]Y. Sunjae, O. Hyeongmin and C. Sewan, “Controller design and implementation of indirect current control based utility-interactive inverter system,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 26-30, 2013.
[63]M. Castilla, J. Miret, A. Camacho, J. Matas and L. G. Vicuna, “Reduction of current harmonic distortion in three-phase grid-connected photovoltaic inverters via resonant current control,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1464-1472, 2013.
[64]F. G. Espin, I. Patrao, E. Figueres and G. Garcera, “An adaptive digital control technique for improved performance of grid connected inverters,” IEEE Trans. Ind. Info., vol. 9, no. 2, pp. 708-718, 2013.
[65]A. Sato and T. Noguchi, “Voltage-source PWM rectifier-inverter based on direct power control and its operation characteristics,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1559-1567, 2011.
[66]J. R. Fischer, S. A. Gonzalez, I. Carugati, M. A. Herran, M. G. Judewicz and D. O. Carrica, “Robust predictive control of grid-tied converters based on direct power control,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5634-5643, 2014.
[67]A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2295-2304, 2007.
[68]D. Limon, M. Pomar, J. E. Normey-Rico, T. L. M. Santos and E. F. Camacho, “Robust design of dead-time compensator controllers for constrained non-linear systems,” IEEE CDC-ECC., pp. 2022-2027, 2011.
[69]F. Chierchie, L. Stefanazzi, E. E. Paolini and A. R. Oliva, “Frequency analysis of PWM inverters with dead-time for arbitrary modulating signals,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2850-2860, 2014.
[70]P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” in Proc. IEEE PEDS, vol. 2, 1995, pp. 571-576.
[71]T. G. Habetler, R. Naik and T. A. Nondahl, “Design and implementation of an inverter output LC filter used for dv/dt reduction,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 327-331, 2002.
[72]A. Houari, H. Renaudineau, J. P. Martin, S. Pierfederici and F. M. Tabar, “Flatness-based control of three-phase inverter with output filter,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2890-2897, 2012.
[73]I. S. Mohamed, S. A. Zaid, H. M. Elsayed and M. F. A. Elyazeed, “Three-phase inverter with output LC filter using predictive control for UPS applications,” in Proc. IEEE CoDIT, 2013, pp. 489-494.
[74]Q. C. Zhong and T. Hornik, “Cascaded current-voltage control to improve the power quality for a grid-connected inverter with a local load,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1344-1355, 2013.
[75]M. Shahparasti, M. Mohamadian, A. Yazdin, A. A. Ahmad and M. Amini, “Derivation of a stationary-frame single-loop controller for three-phase standalone inverter supplying nonlinear loads,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 5063-5071, 2014.
[76]P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993.
[77]F. Blaabjerg, D. Neacsu and J. K. Pedersen, “Adaptive SVM to compensate DC-link voltage ripple for component minimized voltage source inverters,” in Proc. IEEE PESC, vol. 1, 1997, pp. 580-589.
[78]P. Hui, M. Hagiwara and H. Akagi, “Modeling and analysis of switching-ripple voltage on the DC link between a diode rectifier and a modular multilevel cascade inverter (MMCI),” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 75-84, 2013.
[79]J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in sinusoidal wave inverter,” in Proc. IEEE IPEMC, vol. 3, 2000, pp. 1122-1126.
[80]M. Li and Y. Xing, “Digital voltage regulation with flux balance control for sine wave inverters,” in Proc. IEEE APEC, vol. 3, 2004, pp. 1709-1713.
D. Switch Mode Rectifiers
[81]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[82]H. Mao, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[83]J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems-Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[84]T. Friedli, M. Hartmann, J. W. Kolar, “The essence of three-phase PFC rectifier systems-PartⅡ,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[85]R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” in Proc. IEEE APEC, vol. 2, 1997, pp. 895-901.
[86]J. Yungtaek and M. M. Jovanovic, “A comparative study of single-switch three-phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, 1998.
[87]J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[88]D. S. Oliverira, L. Barreto, F. Antunes, M. Silva, D. L. Queiroz and A. R. Rangel, “A DCM three-phase high frequency semi-controlled rectifier feasible for power WECS based on a permanent magnet generator,” in Proc. IEEE COBEP, 2009, pp. 1193-1199.
[89]D. S. Oliverira, L. Barreto, F. Antunes, M. Silva, D. L. Queiroz and A. R. Rangel, “A DCM three-phase high frequency semi-controlled rectifier feasible for power WECS based on a permanent magnet generator,” in Proc. IEEE COBEP, 2009, pp. 1193-1199.
[90]H. Kanaan, K. Al-Haddad, R. Chaffai, L. Duguay and F. Fnaiech, “A new low-frequency state model of a three-phase three-switch three-level fixed-frequency PWM rectifier,” in Proc. IET INTELEC, 2001, pp. 384-391.
[91]N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal model of three-phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008.
[92]B. Tamyurek, A. Ceyhan, E. Birdane and F. Keles, “A simple DSP based control system design for a three-phase high power factor boost rectifier,” in Proc. IEEE APEC, 2008, pp. 1416-1422.
[93]C. Lujie, W. L. Soong, M. Pathmanathan and N. Ertugrul, “Comparison of AC/DC converters and the principles of a new control strategy in small-scale wind turbine systems,” in Proc IEEE AUPEC, 2012, vol. 1, no. 6, pp. 26-29.
[94]S. A. Zabalawi, G. Mandic and A. Nasiri, “Utilizing energy storage with PV for residential and commercial use,” in Proc. IEEE Conf. Ind. Electron., pp. 1045-1050, 2008.
[95]X. Li, L. Lopes and S. Williamson, “On the suitability of plug-in hybrid electric vehicle (PHEV) charging infrastructures based on wind and solar energy,” in Proc. IEEE PES., pp. 1-8, 2009.
[96]C. Hamilton, G. Gamboa, J. Elmes, R. Kerley, A. Arias, M. Pepper, J. Shen and I. Batarseh, “System architecture of a modular direct-DC PV charging station for plug-in electric vehicles,” in Proc. IEEE IECON. Soc., pp. 2516-2520, 2010.
[97]Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011.
[98]S. W. Mohod and M. V. Aware, “Micro wind power generator with battery energy storage for critical load,” IEEE Syst. J., vol. 6, no. 1, pp. 118-125, 2012.
[99]J. Traube, F. Lu and D. Maksimovic, “Electric vehicle DC charger integrated within a photovoltaic power system,” in Proc. IEEE Appl. Power Electron., pp. 352-358, 2012.
[100]V. de la Fuente, C. L. T. Rodriguez, G. Garcera, E. Figueres and R. O. Gonzalez, “Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities,” IEEE Trans. Ind Electron., vol. 60, no. 4, pp. 1571-1581, 2013.
[101]K. Strunz, E. Abbasi and Duc Nguyen Huu, “DC microgrid for wind and solar power integration,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 1, pp. 115-126, 2014.
E. Others
[102]“Digital signal controller TMS320F2812 datasheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f2812.pdf, 2013,7,30.
[103]“Digital signal controller TMS320F28335 datasheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, 2013,7,30.
[104]“Digital signal controller TMS320F28069 datasheet,” Available: http://datasheet. elcodis.com/pdf/21/97/219781/tmdxcncd28069.pdf, 2013,7,30.
[105]R. C. Dugan, M. F. McGranaghan, S. Santoso and H. W. Beaty, Electrical Power Systems Quality, 2nd ed., New York: McGraw-Hill, 2003.
[106]A. Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Del., vol. 16, no. 8, pp. 782-790, 2001.
[107]T. M. Blooming, D. J. Carnovale, “Application of IEEE STD 519-1992 Harmonic Limits,” in Proc. IEEE Pulp and Paper Industry Technical Conference, 2006, pp. 1-9.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *