帳號:guest(13.58.155.197)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅順弘
作者(外文):Lo, Shun-Hung
論文名稱(中文):電力調節系統之單相三線式換流器研製
論文名稱(外文):Design and Implementation of Single-Phase Three-Wire Inverter for Power Conditioning System
指導教授(中文):吳財福
潘晴財
指導教授(外文):Wu, Tsai-Fu
Pan, Ching-Tsai
口試委員(中文):羅有綱
陳鴻祺
口試委員(外文):Yu-Kang Lo
Hung-Chi Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061501
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:91
中文關鍵詞:單相三線式雙向換流器不斷電系統併網分切合整控制法阻抗估測法
外文關鍵詞:single-phase three-wire bidirectional inverteruninterruptible power system (UPS)grid-connectiondivision-summation (D-Σ) digital controload impedance estimation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:399
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
考量電力系統的配電架構,並結合分散式發電與備用電源裝置,本研究提出一應用於電力調節系統之單相三線式雙向換流器,可調節直流鏈與交流電網間的電力潮流,同時亦擁有不斷電系統的功能。此換流器可分為電力級與控制級,電力級採用雙半橋架構,而控制級以微控制器Renesas RX62T 做為數位控制核心,實現所推導出之開關責任比率。
本研究之主要貢獻可摘要如下:第一點貢獻為提出一多功能單相三線式換流器,其操作模式包含併網模式和穩壓模式。當市電正常時,換流器操作於併網模式,若直流鏈電力充足時,換流器執行電力注入功能,將直流鏈電力饋入市電;當直流鏈電力不足時,換流器執行整流功能,由市電將電力送至直流鏈。若市電發生異常,換流器切換至穩壓模式,使負載可以持續運作。第二點貢獻為採用分切合整控制法,將交流電壓與電感值納入控制法則推導,因此換流器可避免因交流電壓諧波而造成輸出電流失真,同時可允許寬廣的電感值變化,有效減少電感鐵芯的損失與尺寸,並降低輸出電流漣波。第三點貢獻為藉由阻抗估測法將分切合整控制法運用在穩壓模式,同時導入重複控制,有效降低穩壓模式之電壓總諧波失真。最後實作一部單相三線式雙向換流器,並經由實測結果驗證本研究所提出之理論與換流器操作之可行性。
Considering the power distribution system, this research develops a single-phase three-wire bidirectional inverter for integrating renewable and battery back-up energy into uninterruptible power system (UPS). The inverter can control the power flow between the DC bus and utility power. Additionally, it can also work as a UPS. The inverter consists of a power stage and a control stage. The power stage is realized with a dual half-bridge configuration, and a single-chip microcontroller Renesas RX62T is adopted to realize the control stage.
The major contributions of this research can be summarized as follows. First, a multifunctional single-phase three-wire inverter is proposed. The operation of the inverter includes grid-connection and voltage-regulation modes. When utility power operates normally, the inverter operates in grid-connection mode. There are two functions in grid-connection mode, power-injection and rectification. With power-injection function, the inverter will inject real power to utility power. With rectification function, the inverter will buy power to replenish the DC bus. When utility power fails, the inverter can transit seamlessly from grid-connection mode to voltage-regulation mode and function as a UPS. Secondly, the control law includes inductance and grid voltage with division-summation (D-Σ) digital control. Hence, the inverter is allowed to have a wide inductance variation, reducing core loss and size significantly. Thirdly, with load impedance estimation and repetitive control, the D-Σ control can be applied to voltage-regulation mode and the inverter with the D-Σ control can shape sinusoidal output voltage with low harmonic components under various types of load conditions. Finally, the inverter has been implemented and tested. Simulated and experimental results have verified the proposed control scheme and feasibility of the inverter.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 論文大綱 7
第二章 換流器架構與操作模式 8
2.1 換流器架構 8
2.2 操作模式 10
2.1.1 併網模式 10
2.1.2 穩壓模式 15
2.3 操作模式轉換策略 22
2.3.1 併網模式轉換至穩壓模式 22
2.3.2 穩壓模式轉換至併網模式 22
第三章 換流器週邊電路 24
3.1 輔助電源電路 24
3.1.1 PWM控制IC UC3843 24
3.1.2 返馳式轉換器 26
3.1.3 開關驅動電源 27
3.2 直流鏈電壓回授電路 27
3.3 交流端電壓回授電路 29
3.4 電感電流回授電路 30
3.5 硬體保護電路 32
3.6 開關隔離驅動電路 33
3.7 直流鏈預充電路 34
3.8 交流端保護電路 35
第四章 換流器韌體規劃 36
4.1 微控制器介紹 36
4.2 換流器控制流程 38
4.2.1 主程式 38
4.2.2 A/D中斷副程式 40
4.2.3 CAP中斷副程式 43
第五章 實測驗證 45
5.1 電氣規格與選用元件 45
5.2 實務考量 46
5.2.1 電路佈線 46
5.2.2 直流鏈操作電壓 50
5.2.3 中斷模組運算時間 53
5.3 實測結果 55
5.3.1 併網模式 55
5.3.2 穩壓模式 61
5.3.3 模式轉換 76
第六章 結論與未來研究方向 88
6.1 結論 88
6.2 未來研究方向 89
參考文獻 90

[1]REN21, “Renewables 2014 Global Status Report,” Jun. 2014.
[2]World Energy Council, “World Energy Resources: 2013 Survey,” Oct. 2013
[3]L. N. Khanh, J. J. Seo, T. S. Kim, and D. J. Won, “Power-management strategies for a grid-connected PV-FC hybrid system,” IEEE Trans. Power Deliv. , vol. 25, no. 3, pp. 1874–1882, Jul. 2010.
[4]D. D. C. Lu and V. G. Agelidis, “Photovoltaic-battery-powered DC bus system for common portable electronic devices,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 849–855, Mar. 2009.
[5]A. Bhattacharya, C. Chakraborty, and S. Bhattacharya, “Parallel-connected shunt hybrid active power filters operating at different switching frequencies for improved performance,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4007–4019, Nov. 2012.
[6]F. S. Pai and S. J. Huang,” A novel design of line-interactive uninterruptible power supplies without load current sensors,” IEEE Trans. Power Electron, vol. 21, no. 1, pp. 202–210, Jan. 2006.
[7]王凱立,“單相三線式緊急電源系統”,國立中正大學電機工程研究所碩士論文,2013年7月。
[8]J. M. Shen, H. L. Jou, and J. C. Wu, “Transformerless single-phase three-wire line-interactive uninterruptible power supply,” IET Power Electron., vol. 5, no. 9 , pp. 1847–1855, Nov. 2012.
[9]K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Tech., vol. 13, no. 4, pp. 559–576, Jul. 2005.
[10]Y. Cho and J. S. Lai, “Digital plug-in repetitive controller for single-phase bridgeless PFC converters,” IEEE Trans. Power Electron, vol. 28, no. 1, pp. 165–175, Jan. 2013.
[11]S. Jiang, D. Cao, Y. Li, J. Liu, and F. Z. Peng, “Low-THD, fast-transient, and cost-effective synchronous-frame repetitive controller for three-phase UPS inverters,” IEEE Trans. Power Electron, vol. 27, no. 6, pp. 2994–3005, Jun. 2012.
[12]S. Bibian and H. Jin, “High performance predictive dead-beat digital controller for dc power supplies,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 420–427, May 2002.
[13]P. Mattavelli, “An improved deadbeat control for UPS using disturbance observers,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 206–212, Feb. 2005.
[14]C. Cecati, F. Ciancetta, and P. Siano, “A multilevel inverter for photovoltaic systems with fuzzy logic control,” IEEE Trans Ind. Electron., vol. 57, no. 12, pp. 4115–4125, Dec. 2010.
[15]蔡國猷,不斷電電源系統裝置指引(UPS、CVCF),建興,1997。
[16]楊孟勳,“市電併聯模式之雙向換流器研製”,國立中正大學電機工程研究所碩士論文,2010年7月。
[17]張瑞騏,“雙向換流器之功因修正模式數位化控制”,國立中正大學電機工程研究所碩士論文,2010年7月。
[18]林奇德,“具功因修正與市電併聯功能之直流供電系統”,國立中正大學電機工程研究所碩士論文,2006年7月。
[19]林彥佑,“多功能單相換流器研製”,國立中正大學電機工程研究所碩士論文,2012年7月。
[20]Z. Yao, L. Xiao, and Y. Yan, “Seamless transfer of single-phase grid-interactive inverters between grid-connected and stand-alone modes,” IEEE Trans Power Electron, vol. 25, no. 6, pp. 1597–1603, Jun. 2010.
[21]蔡人傑,“換流器操作模式平滑切換研究”,國立中正大學電機工程研究所碩士論文,2013年7月。
[22]UC3843 datasheet.
[23]LAX 100-NP datasheet.
[24]Renesas, “RX62T Group Datasheet Rev. 1.10,” Apr. 2011.
[25]李宥輯,“修正型正弦波寬調變變流器於整流性負載之研究”,國立成功大學電機工程研究所碩士論文,2009年。
[26]李昆岱,“應用DSP實現重負控制於非線性負載變流器之研究”,國立成功大學電機工程研究所碩士論文,1999年。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *