帳號:guest(18.117.91.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):姚寧
作者(外文):Yao, Ning
論文名稱(中文):單相雙向LCL換流器研製
論文名稱(外文):Design and Implementation of Single-Phase Bi-Directional Inverter with LCL Filter
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):羅有綱
陳鴻祺
潘晴財
吳財福
口試委員(外文):Yu-Kang Lo
Hung-Chi Chen
Ching-Tsai Pan
Tsai-Fu Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:101061467
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:76
中文關鍵詞:分佈式發電分切合整數位控制諧波失真LCL濾波器
外文關鍵詞:Distributed generationD-Σ digital controlharmonic distortionLCL-filter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:484
  • 評分評分:*****
  • 下載下載:23
  • 收藏收藏:0
分切合整數位控制能夠精確追蹤參考電流命令並涵蓋寬廣感值變化,已成功應用於單相/三相雙向LC換流器。然而,當換流器操作在併網模式時,市電對電流諧波和因開關切換造成的電流漣波相當於短路,因此高頻的開關切換漣波會大量注入市電,而不能被LC濾波器中的濾波電容所吸收。為了避免漣波電流注入市電,提高電網電流品質,減少對電網的污染,需選用LCL濾波器。LCL濾波器存在著穩定性問題,容易發散和振盪,這將轉而導致電網電流失真。當市電存在顯著的電壓諧波時,同樣會影響電網電流,造成電網電流嚴重失真,並且濾波器中電容電流也會含有諧波成份。爲了使注入市電的電流是基頻弦波電流,換流器的電流追蹤命令必須被更新為新的參考電流,因此本研究提出了基於分切合整控制的電容電流補償機制,此控制機制將分切合整計算所得的參考電流命令與濾波電容電流相加得到新的參考電流命令,使得電流諧波能夠經靠近換流器之濾波電感來補償,從而降低電網電流諧波。經由詳細的理論分析與模擬驗證,此控制機制不僅可有效抑制市電諧波的影響,提高電網電流品質,而且使得換流器的輸出阻抗和電網阻抗在低頻到高頻都具有80°以上的相位裕度,並可以抑制39次高頻諧波電壓的影響,即使連接的電網阻抗較高,換流器也可正常運行。最後,實作出一部5 kW單相雙向換流器,並由實測結果驗證本研究之理論與可行性。
Division-Summation (D-Σ) digital control has been successfully applied to the single-phase bi-directional inverter with an LC filter, which can cover wide inductance variation and achieve precise inverter current tracking. However, high frequency ripple current injection to the grid cannot be avoided, and an LCL filter is therefore required. Since there typically exists grid voltage harmonics, the injected grid current will contain harmonic components due to the effect of the LCL-filter-capacitor. This paper presents an extended application of the D-Σ digital control associated with a filter-capacitor-current compensation to reduce the injected grid-current harmonics. The control laws of the inverter with the D-Σ digital control and compensation approach are derived in detail, and the reduction of grid-current harmonics is analyzed. With the proposed approaches, the phase margin between the output impedance of the inverter and grid impedance can be higher than 80° from low to high frequencies, and the inverter can achieve high harmonic voltage rejection ratio up to 39th harmonic, which is relatively suitable for weak grid condition. Experimental results measured from a 5 kW single-phase bi-directional inverter have verified the feasible application of the D-Σ digital control and proposed compensation.
目 錄
摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 換流器分類和拓撲 2
1.2.2 換流器濾波形式 2
1.2.3 換流器控制策略 3
1.3 論文大綱 7
第二章 換流器動作原理 9
2.1 換流器架構 9
2.2 換流器操作模式 10
2.2.1 市電併聯模式 10
2.2.2 整流模式 12
第三章 濾波器設計與補償機制 15
3.1 濾波電路 15
3.1.1 L濾波電路 16
3.1.2 LC濾波電路 16
3.1.3 LCL濾波電路 16
3.2 LCL濾波器參數設計 19
3.2.1 諧振頻率 19
3.2.2 LS的參數選取 21
3.2.3 CS的參數選取 22
3.2.4 Lg的參數選取 23
3.2.5 穩定性分析 24
3.3 電容電流補償機制 25
3.3.1 機制介紹 25
3.3.2 穩定性分析 27
3.3.3 與傳統方法的比較 30
第四章 控制韌體規劃 32
4.1 微控制器簡介 32
4.2 系統控制流程 35
4.2.1 系統主程式 35
4.2.2 輸入捕捉中斷副程式 36
4.2.2 A/D中斷副程式 37
第五章 周邊電路設計 39
5.1 輔助電源 39
5.2 保護電路 41
5.3 市電電壓、電容電壓偵測電路 42
5.4 直流鏈電壓偵測電路 44
5.5 電感電流感測電路 44
5.6 開關隔離驅動電路 45
第六章 模擬與實測 47
6.1 電氣規格 47
6.2 模擬結果 48
6.3 實務考量 52
6.3.1 死區時間 53
6.3.2 電感變化補償 53
6.4 實測結果 56
6.4.1 市電併聯模式 57
6.4.2 整流模式 65
第七章 結論與未來研究方向 71
7.1 結論 71
7.2 未來研究方向 72

參考文獻 73
參考文獻
[1] IEEE Application Guide for IEEE Std. 1547, IEEE Standard for Interconnecting Distributed Resources With Electric Power Systems, IEEE 1547.2-2008, 2009.
[2] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE 519-1992, 1993.
[3] Y. Tang, P. Loh, P. Wang, F. Choo, and F. Gao, “Exploring inherent damping characteristic of LCL-filters for three-phase grid-connected voltage source inverters,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1433–1443, Mar. 2012.
[4] J. Dannehl, M. Liserre, and F. W. Fuchs, “Filter-based active damping of voltage source converters with LCL filter,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3623–3633, Aug. 2011.
[5] A. Cagnano, E. De Tuglie, M. Liserre, and R. A. Mastromauro, “Online optimal reactive power control strategy of PV inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4549–4558, Oct. 2011.
[6] G. Shen, X. Zhu, J. Zhang, and D. Xu, “A new feedback method for PR current control of LCL-filter-based grid-connected inverter,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2033–2041, Jun. 2010.
[7] J. M. Espi, J. Castello, R. García-Gil, G. Garcera, and E. Figueres, “An adaptive robust predictive current control for three-phase grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3537–3546, Aug. 2011.
[8] Y. A. R. I. Mohamed, “Suppression of low- and high-frequency instabilities and grid-induced distortion and disturbances in distributed generation inverters,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3790–3803, Dec. 2011.
[9] J. He and Y. Li, “Generalized closed-loop control (GCC) schemes with embedded virtual impedances for voltage source converters with LC or LCL filters,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1850–1861, Apr. 2012.
[10] J. R. Massing, M. Stefanello, H. A. Grundling, and H. Pinheiro, “Adaptive current control for grid-connected converters with LCL filter,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4681–4693, Dec. 2012.
[11] F. Huerta, D. Pizarro, S. Cobreces, F. J. Rodriguez, C. Giron, and A. Rodriguez, “LQG servo controller for the current control of LCL grid-connected voltage-source converters,” IEEE Trans. Ind. Electron., vol. 59,no. 11, pp. 4272–4284, Nov. 2012.
[12] Y. Tang, P. Loh, P. Wang, F. Choo, F. Gao, and F. Blaabjerg, “Generalized design of high performance shunt active power filter with output LCL-filter,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1443–1452, Mar. 2012.
[13] W. Wu, Y. He, T. Tang, and F. Blaabjerg, “A New Design Method for the Passive Damped LCL and LLCL Filter-Based Single-Phase Grid-Tied Inverter,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4339–4350, Oct. 2013.
[14] A. A. Rockhill, M. Liserre, R. Teodorescu, and P. Rodriguez, “Grid-filter design for a multimegawatt medium-voltage voltage-source inverter,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1205–1217, Apr. 2011.
[15] P. Channegowda and V. John, “Filter optimization for grid interactive voltage source inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4106–4114, Dec. 2010.
[16] R. Turner, S. Walton, and R. Duke, “Stability and bandwidth implications of digitally controlled grid-connected parallel inverters,” IEEE Trans. Power Electron., vol. 57, no. 11, pp. 3685–3694, Nov. 2010.
[17] X. Wang, X. R, S. Liu and C.K. Tse, “Full feedforward of grid voltage for grid-connected inverter with LCL filter to suppress current distortion due to grid voltage harmonics,” IEEE Trans. on Power Electronics, vol. 25, no 12, pp. 3119-3127, April. 2010.
[18] Z. Zou, Z. Wang and M. Cheng “Modeling, analysis, and design of multifunction grid-interfaced inverters with output LCL filter” IEEE Trans. on Power Electronics, vol. 27, no 7, pp. 2830-2839, July 2014.
[19] J. R. Massing, M. Stefanello, H. A. Grundling, and H. Pinheiro, “Adaptive current control for grid-connected converters with LCL filter,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4681–4693, Dec. 2012.
[20] J. Sun “Impedance-based stability criterion for grid-connected inverters” IEEE Trans. on Power Electronics, vol. 26, no 11, pp. 3075-3078, Nov. 2011.
[21] D. Yang, X. Ruan and H. Wu, “Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition” IEEE Trans. on Power Electronics, 2014, Early Accept.
[23] T. F. Wu, C. H. Chang, L. C. Lin, and H. C. Hsieh, “D-Σ digital control for a three-phase transformerless bi-directional inverter with wide inductance variation,” in IEEE ECCE Asia, pp. 73-79, 2013
[24] “Magnetic Powder Cores Ver. 8,” www.changsung.com
[25] T. F. Wu, L. C. Lin, C. H. Chang, Y. L. Lin, and Y. C. Chang, “Current improvement for a 3ϕ bi-directional inverter with wide inductance variation,” in Proc. IEEE ECCE Asia, pp.1777-1784, 2011.
[26] 楊孟勳,「“市電併聯模式之雙向換流器研製”」,國立中正大學電機工程研究所碩士論文,2010年7月。
[27] 張瑞騏,「“雙向換流器之功因修正模式數位化控制”」,國立中正大學電機工程研究所碩士論文,2010年7月。
[28] 林彥佑,「“多功能單相換流器研製”」,國立中正大學電機工程研究所碩士論文,2012年7月。
[29] 蔡人傑,「“換流器操作模式平滑切換研究”」,國立中正大學電機工程研究所碩士論文,2013年
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *