帳號:guest(3.22.61.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曹卲喧
作者(外文):Tsao, Shao Hsuan
論文名稱(中文):蠶絲蛋白 /金屬奈米粒子複合材料在生醫及光電之應用
論文名稱(外文):Silk Fibroin/Metal Nanoparticles Composite in Biomedical and Photoelectric Applications
指導教授(中文):萬德輝
指導教授(外文):Wan, Dehui
口試委員(中文):陳學禮
賴宇紳
口試委員(外文):Chen, Hsuen Li
Lai, Yu Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:101038509
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:90
中文關鍵詞:蠶絲蛋白金屬奈米粒子寬頻吸收複合薄膜光熱電偵測器
外文關鍵詞:Silk fibroinMetal nanoparticlesBroadband absorptive conposite thin filmPhoto-Thermo-Electric photodetector
相關次數:
  • 推薦推薦:0
  • 點閱點閱:187
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究中,探討蠶絲蛋白混摻金屬奈米粒子 (金奈米粒子、銀奈米粒子以及中空金奈米粒子) 之複合薄膜的光學行為、在白光燈源照射下之光熱行為以及利用光誘導熱產生電流之響應。據我們所知,目前尚未有以高分子/金屬奈米粒子系統開發寬頻且高吸收之複合薄膜,同樣的,選擇白光光源探討光熱效應的研究也相當有限。本研究藉由增加金屬奈米粒子在薄膜中的含量,希望能將增加侷域表面電漿共振 (LSPR) 吸收波段附近的吸收值之外,更重要的是希望增加在非LSPR吸收波段之吸收值,得到具有寬頻吸收特性的複合薄膜。當大量的吸收子存在時,有助於光熱效應速率。本研究比較了三種不同的金屬奈米粒子,其中,蠶絲蛋白/中空金奈米粒子複合薄膜表現出優異的光學性質,此複合薄膜具有寬頻且高吸收的特性,在350-2000 nm波段之吸收值皆>90%,因此在同樣光強度的入射光之下,此複合薄膜可以吸收涵蓋這個範圍的所有入射光,將光能量轉換成熱能。此外,由實驗結果發現到不管是利用LED燈或是鹵素燈做為白光光源,都可以快速地讓溫度上升到超過100 oC,此外,蠶絲蛋白/金屬奈米粒子複合薄膜皆對光強度呈現線性關係,且因為蠶絲蛋白具有高玻璃轉換溫度,因此在較高的光強度照射下,具有良好的光熱穩定性。為了進一步證實蠶絲蛋白/金屬奈米粒子複合薄膜在光-熱-電流的響應,本研究將整合寬頻吸收複合薄膜以及鋁/矽蕭特基二極體,分別以鹵素燈以及單一波長做為光源,探討光-熱-電流響應。在上述所提兩種型態光源的照射下,皆得到電流值對光強度呈現線性關係,此外,經由重複性的光─熱─電流響應測試,在經過10個循環之後,蠶絲蛋白/金屬奈米粒子複合薄膜仍舊有穩定的光─熱─電流響應。本研究中所開發的蠶絲蛋白/金屬奈米粒子複合薄膜系統具有寬頻高吸收特性、良好的光熱穩定性以及穩定的光熱電流響應,由於蠶絲蛋白為高生物相容性以及生物可降解性的材料,未來可與同樣為高生物相容性的熱電材料 (例如: 聚二氧乙基噻吩,簡稱PEDOT) 結合,應用於生物體內之充電材料。
In this study, the phenomenon of white-light-induced heating in silk fibroin (SF) films embedded with metal nanoparticles [Gold nanoparticles (Au NPs), Silver nanoparticles (AGNs), Hollow gold nanoaparticles (HGNs)] is systematically investigated. As far as we are aware, this study is the first to employ metal nanoparticles to develop an ultrahigh broadband absorber and also the first to use a white light source for the photothermal generation. By increasing the metal nanoparticle content in the composite films, the absorbance could be enhanced significantly around the localized surface plasmon resonance (LSPR) wavelength and also raised dramatically at the non-LSPR wavelengths. The greater amount of absorbed light led to an increase in the photoheating rate. Here, we compare three different metal nanoparticles including Au NPs, AGNs and HGNs with different LSPR wacelength at ca. 410 nm, 520 nm and 800 nm, respectively. For SF/HGNs, the optimized composite film exhibits an ultrahigh absorbance of ca.>90% over a wide spectral range of 350-2000 nm. In this case, the composite film could absorb almost all of the incident light and accordingly convert the optical energy to local heat. Therefore, significant temperature increases on the order of ca. >100 °C could be readily obtained when the composite film is irradiated by a LED light a halogen lamp. Moreover, the composite films also display a linear light-to-heat response with light intensity and a great photothermal stability. Finally, the broadband absorptive film is coated on a simply Al/Si Schottky diode and displays a linear, significant, stable photo-thermo-electronic response with varying light intensity. Here, we demonstrate the broadband absorptive film have photo-thermo-electronic response under either white light sources or single wavelength light exposure since its ultrahigh absorbance over a wide spectral range of 350-2000 nm.
中文摘要 I
Abstract II
圖目錄 IX
表目錄 XIV
第一章、緒論 1
1.1 研究動機 1
1.2 論文架構 3
第二章 文獻回顧 5
2.1 蠶絲蛋白 5
2.1.1 蠶絲蛋白之簡介 5
2.1.2 蠶絲蛋白在生物醫學之應用 6
2.1.3 蠶絲蛋白在光學材料之應用 11
2.2 金屬奈米粒子 12
2.2.1 金屬奈米粒子合成 12
2.2.1.1 實心金奈米粒子 (Gold nanoparticle, Au NP) 12
2.1.1.2 實心銀奈米粒子 (Silver nanoparticle, AGN) 13
2.1.1.3 中空金奈米粒子 (Hollow gold nanoparticle, HGN) 13
2.2.2金屬奈米粒子之物化性質 15
2.2.2.1 金屬奈米粒子之簡介 15
2.2.2.2 金屬奈米粒子之光學性質 (Optical property) 15
2.2.3 金屬奈米粒子之光熱性質 (Photothermal property) 18
2.3 無機熱電材料 21
2.4 有機熱電材料 22
2.5 矽基光電偵測器 24
2.5.1 p-n接面二極體 (p-n junction) 24
2.5.2 蕭特基二極體 (Schottky diode) 25
2.5.3 矽基近紅外光電偵測器 30
第三章、實驗材料與方法 34
3.1 材料 34
3.2 純化蠶絲蛋白 34
3.3 金屬奈米粒子合成 35
3.3.1 金奈米粒子 (Gold nanoparticle, Au NP) 35
3.3.2 銀奈米粒子 (Silver nanoparticle, AGN) 35
3.3.3 中空金奈米粒子 (Hollow gold nanoparticle, HGN) 36
3.4 製備蠶絲蛋白/金屬奈米粒子薄膜於基材上 36
3.5 鋁/矽元件製備 36
3.6 材料特性分析 37
3.6.1形貌分析 37
3.6.2光學量測 37
3.6.3光學模擬 37
3.6.4光熱現象 38
3.6.5光-熱-電流響應 39
第四章、開發寬頻吸收之蠶絲蛋白/金奈米粒子複合薄膜於白光光源照射下之光熱行為 40
4.1 蠶絲蛋白/實心金奈米粒子溶液之光學特性以及金屬奈米粒子之表面形貌 41
4.2 蠶絲蛋白/實心金奈米粒子複合薄膜之形貌 42
4.3 蠶絲蛋白/實心金奈米粒子複合薄膜之光學量測 45
4.4 蠶絲蛋白/實心金奈米粒子複合薄膜之光學模擬 49
4.5 蠶絲蛋白/實心金奈米粒子複合薄膜之光熱效應 53
4.6 結合鋁/矽蕭特基元件 (Schottky diode) 60
4.6.1 白光光源-熱-電流響應 60
第五章、開發寬頻吸收之蠶絲蛋白/金奈米粒子複合薄膜於通訊波段之光-熱-電偵測器 64
5.1蠶絲蛋白/金屬奈米粒子溶液之光學特性以及金屬奈米粒子之表面形貌 65
5.2蠶絲蛋白/金屬奈米粒子複合薄膜之形貌 66
5.3 蠶絲蛋白/金屬奈米粒子複合薄膜之光學量測 66
5.4 蠶絲蛋白/金屬奈米粒子複合薄膜之光學模擬 69
5.5 蠶絲蛋白/金屬奈米粒子複合薄膜之光熱效應 71
5.6 結合鋁矽蕭特基元件 (Schottky diode) 76
5.6.1單一波長光源-熱-電流響應 76
第六章、結論 79
未來工作 81
參考文獻 82
[1] Seib FP, Kaplan DL. Doxorubicin-loaded silk films: drug-silk interactions and in vivo performance in human orthotopic breast cancer. Biomaterials. 2012;33:8442-50.
[2] Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR. Controlling silk fibroin particle features for drug delivery. Biomaterials. 2010;31:4583-91.
[3] Tao H, Siebert SM, Brenckle MA, Averitt RD, Cronin-Golomb M, Kaplan DL, et al. Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices. Appl Phys Lett. 2010;97.
[4] Hu X, Shmelev K, Sun L, Gil ES, Park SH, Cebe P, et al. Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing. Biomacromolecules. 2011;12:1686-96.
[5] Chang H-H, Fang AW, Sysak MN, Park H, Jones R, Cohen O, et al. 1310nm silicon evanescent laser. Optics express. 2007;15:11466-71.
[6] DeCusatis C, Kaminow IP. The optical communications reference. Amsterdam: Academic; 2010.
[7] Tao H, Kaplan DL, Omenetto FG. Silk Materials - A Road to Sustainable High Technology. Advanced Materials. 2012;24:2824-37.
[8] Tansil NC, Koh LD, Han MY. Functional Silk: Colored and Luminescent. Advanced Materials. 2012;24:1388-97.
[9] Borkner CB, Elsner MB, Scheibel T. Coatings and Films Made of Silk Proteins. Acs Appl Mater Inter. 2014;6:15611-25.
[10] Hu X, Cebe P, Weiss AS, Omenetto F, Kaplan DL. Protein-based composite materials. Mater Today. 2012;15:208-15.
[11] You R, Zhang Y, Liu Y, Liu G, Li M. The degradation behavior of silk fibroin derived from different ionic liquid solvents. Natural Science. 2013;5:10.
[12] Lawrence BD, Wharram S, Kluge JA, Leisk GG, Omenetto FG, Rosenblatt MI, et al. Effect of hydration on silk film material properties. Macromolecular bioscience. 2010;10:393-403.
[13] Rockwood DN, Preda RC, Yucel T, Wang XQ, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6:1612-31.
[14] Parker ST, Domachuk P, Amsden J, Bressner J, Lewis JA, Kaplan DL, et al. Biocompatible Silk Printed Optical Waveguides. Advanced Materials. 2009;21:2411-+.
[15] Tao H, Brenckle MA, Yang MM, Zhang JD, Liu MK, Siebert SM, et al. Silk-Based Conformal, Adhesive, Edible Food Sensors. Advanced Materials. 2012;24:1067-72.
[16] Kim S, Mitropoulos AN, Spitzberg JD, Tao H, Kaplan DL, Omenetto FG. Silk inverse opals. Nat Photonics. 2012;6:817-22.
[17] Amsden JJ, Domachuk P, Gopinath A, White RD, Dal Negro L, Kaplan DL, et al. Rapid Nanoimprinting of Silk Fibroin Films for Biophotonic Applications. Adv Mater. 2010;22:1746-+.
[18] da Silva RR, Dominguez CT, dos Santos MV, Barbosa-Silva R, Cavicchioli M, Christovan LM, et al. Silk fibroin biopolymer films as efficient hosts for DFB laser operation. J Mater Chem C. 2013;1:7181-90.
[19] Jiang CY, Wang XY, Gunawidjaja R, Lin YH, Gupta MK, Kaplan DL, et al. Mechanical properties of robust ultrathin silk fibroin films. Advanced Functional Materials. 2007;17:2229-37.
[20] Lin N, Hu F, Sun Y, Wu C, Xu H, Liu XY. Construction of White‐Light‐Emitting Silk Protein Hybrid Films by Molecular Recognized Assembly among Hierarchical Structures. Advanced functional materials. 2014;24:5284-90.
[21] Cebe P, Hu X, Kaplan DL, Zhuravlev E, Wurm A, Arbeiter D, et al. Beating the heat--fast scanning melts silk beta sheet crystals. Scientific reports. 2013;3:1130.
[22] Elakkiya T, Malarvizhi G, Rajiv S, Natarajan TS. Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery. Polymer International. 2014;63:100-5.
[23] Zhang W, Wang X, Wang S, Zhao J, Xu L, Zhu C, et al. The use of injectable sonication-induced silk hydrogel for VEGF< sub> 165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials. 2011;32:9415-24.
[24] Yucel T, Cebe P, Kaplan DL. Vortex-induced injectable silk fibroin hydrogels. Biophysical journal. 2009;97:2044-50.
[25] Perrone GS, Leisk GG, Lo TJ, Moreau JE, Haas DS, Papenburg BJ, et al. The use of silk-based devices for fracture fixation. Nature communications. 2014;5.
[26] Tao H, Hwang S-W, Marelli B, An B, Moreau JE, Yang M, et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proceedings of the National Academy of Sciences. 2014;111:17385-9.
[27] Turkevich J, Stevenson PC, Hillier J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discussions of the Faraday Society. 1951:55-&.
[28] Turkevich J, Hubbell HH. Low Angle X-Ray Diffraction of Colloidal Gold and Carbon Black1a. Journal of the American Chemical Society. 1951;73:1-7.
[29] Green M, O'Brien P. A simple one phase preparation of organically capped gold nanocrystals. Chemical Communications. 2000:183-4.
[30] Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. Journal of the Chemical Society-Chemical Communications. 1994:801-2.
[31] Labhasetwar V, Leslie-Pelecky DL. Biomedical applications of nanotechnology. Hoboken, N.J.: Wiley-Interscience; 2007.
[32] Oliveira MM, Ugarte D, Zanchet D, Zarbin AJ. Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of colloid and interface science. 2005;292:429-35.
[33] Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3:135-40.
[34] Xu H, Shi X, Lv Y, Mao Z. The preparation and antibacterial activity of polyester fabric loaded with silver nanoparticles. Textile research journal. 2013;83:321-6.
[35] Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ. Infrared extinction properties of gold nanoshells. Applied Physics Letters. 1999;75:2897-9.
[36] Shi WL, Sahoo Y, Swihart MT, Prasad PN. Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir. 2005;21:1610-7.
[37] Sun YG, Xia YN. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Analytical Chemistry. 2002;74:5297-305.
[38] Sun YG, Mayers BT, Xia YN. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Letters. 2002;2:481-5.
[39] Ng JD, Lorber B, Witz J, TheobaldDietrich A, Kern D, Giege R. The crystallization of biological macromolecules from precipitates: Evidence for Ostwald ripening. Journal of Crystal Growth. 1996;168:50-62.
[40] Boistelle R, Astier JP. Crystallization Mechanisms in Solution. Journal of Crystal Growth. 1988;90:14-30.
[41] Walters G, Parkin IP. The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterisation and applications. Journal of Materials Chemistry. 2009;19:574-90.
[42] Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - I. Theory. Anal Biochem. 1998;262:137-56.
[43] Orendorff CJ, Sau TK, Murphy CJ. Shape-dependent plasmon-resonant gold nanoparticles. Small. 2006;2:636-9.
[44] Jackson JB, Halas NJ. Silver nanoshells: Variations in morphologies and optical properties. J Phys Chem B. 2001;105:2743-6.
[45] Selvakannan PR, Sastry M. Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chem Commun. 2005:1684-6.
[46] Novak JP, Nickerson C, Franzen S, Feldheim DL. Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal Chem. 2001;73:5758-61.
[47] Caruso RA, Antonietti M. Sol-gel nanocoating: An approach to the preparation of structured materials. Chem Mater. 2001;13:3272-82.
[48] Kubo S, Diaz A, Tang Y, Mayer TS, Khoo IC, Mallouk TE. Tunability of the refractive index of gold nanoparticle dispersions. Nano Lett. 2007;7:3418-23.
[49] Hao E, Li SY, Bailey RC, Zou SL, Schatz GC, Hupp JT. Optical properties of metal nanoshells. Journal of Physical Chemistry B. 2004;108:1224-9.
[50] Schwartzberg AM, Oshiro TY, Zhang JZ, Huser T, Talley CE. Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles. Anal Chem. 2006;78:4732-6.
[51] Shukla S, Priscilla A, Banerjee M, Bhonde RR, Ghatak J, Satyam PV, et al. Porous gold nanospheres by controlled transmetalation reaction: A novel material for application in cell imaging. Chem Mater. 2005;17:5000-5.
[52] Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY, et al. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 2005;5:473-7.
[53] Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B. 2003;107:668-77.
[54] Prevo BG, Esakoff SA, Mikhailovsky A, Zasadzinski JA. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small. 2008;4:1183-95.
[55] Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today. 2007;2:30-8.
[56] Richardson HH, Carlson MT, Tandler PJ, Hernandez P, Govorov AO. Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions. Nano Lett. 2009;9:1139-46.
[57] Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett. 2006;1:84-90.
[58] Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton TA. Limits of localized heating by electromagnetically excited nanoparticles. J Appl Phys. 2006;100.
[59] Wan DH, Chen HL, Tseng SC, Wang LA, Chen YP. One-Shot Deep-UV Pulsed-Laser-Induced Photomodification of Hollow Metal Nanoparticles for High-Density Data Storage on Flexible Substrates. Acs Nano. 2010;4:165-73.
[60] Heber A, Selmke M, Cichos F. Metal Nanoparticle Based All-Optical Photothermal Light Modulator. Acs Nano. 2014;8:1893-8.
[61] Baffou G, Polleux J, Rigneault H, Monneret S. Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination. J Phys Chem C. 2014;118:4890-8.
[62] Fang ZY, Zhen YR, Neumann O, Polman A, de Abajo FJG, Nordlander P, et al. Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle. Nano Lett. 2013;13:1736-42.
[63] Baffou G, Berto P, Urena EB, Quidant R, Monneret S, Polleux J, et al. Photoinduced Heating of Nanoparticle Arrays. Acs Nano. 2013;7:6478-88.
[64] Russell AG, McKnight MD, Hestekin JA, Roper DK. Thermodynamics of Optoplasmonic Heating in Fluid-Filled Gold-Nanoparticle-Plated Capillaries. Langmuir : the ACS journal of surfaces and colloids. 2011;27:7799-805.
[65] Dunklin JR, Forcherio GT, Berry KR, Roper DK. Gold Nanoparticle-Polydimethylsiloxane Thin Films Enhance Thermoplasmonic Dissipation by Internal Reflection. Journal of Physical Chemistry C. 2014;118:7523-31.
[66] Forcherio GT, Roper DK. Optical attenuation of plasmonic nanocomposites within photonic devices. Appl Optics. 2013;52:6417-27.
[67] Maity S, Bochinski JR, Clarke LI. Metal Nanoparticles Acting as Light-Activated Heating Elements within Composite Materials. Advanced Functional Materials. 2012;22:5259-70.
[68] Yavuz MS, Cheng YY, Chen JY, Cobley CM, Zhang Q, Rycenga M, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater. 2009;8:935-9.
[69] Kojic N, Pritchard EM, Tao H, Brenckle MA, Mondia JP, Panilaitis B, et al. Focal Infection Treatment using Laser-Mediated Heating of Injectable Silk Hydrogels with Gold Nanoparticles. Advanced Functional Materials. 2012;22:3793-8.
[70] Zhang HJ, Xia HS, Zhao Y. Light-Controlled Complex Deformation and Motion of Shape-Memory Polymers Using a Temperature Gradient. Acs Macro Lett. 2014;3:940-3.
[71] Zhang HJ, Zhao Y. Polymers with Dual Light-Triggered Functions of Shape Memory and Healing Using Gold Nanoparticles. Acs Appl Mater Inter. 2013;5:13069-75.
[72] Ramesh GV, Porel S, Radhakrishnan TP. Polymer thin films embedded with in situ grown metal nanoparticles. Chemical Society reviews. 2009;38:2646-56.
[73] Ghanipour M, Dorranian D. Effect of Ag-Nanoparticles Doped in Polyvinyl Alcohol on the Structural and Optical Properties of PVA Films. J Nanomater. 2013.
[74] Cao ZX, Chen ZY, Escoubas L. Optical, structural, and electrical properties of PEDOT:PSS thin films doped with silver nanoprisms. Opt Mater Express. 2014;4:2525-34.
[75] de Luzuriaga AR, Grande H, Pomposo JA. A Theoretical Investigation of Polymer-Nanoparticles as Miscibility Improvers in All-Polymer Nanocomposites. J Nano Res-Sw. 2008;2:105-14.
[76] Dunklin JR, Forcherio GT, Berry Jr KR, Roper D. Gold nanoparticle–polydimethylsiloxane thin films enhance thermoplasmonic dissipation by internal reflection. The Journal of Physical Chemistry C. 2014;118:7523-31.
[77] Hsieh KC, Tsai TY, Wan DH, Chen HL, Tai NH. Iridescence of Patterned Carbon Nanotube Forests on Flexible Substrates: From Darkest Materials to Colorful Films. Acs Nano. 2010;4:1327-36.
[78] Yang ZP, Ci LJ, Bur JA, Lin SY, Ajayan PM. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008;8:446-51.
[79] Weissleder R. A clearer vision for in vivo imaging. Nature Biotechnology. 2001;19:316-7.
[80] Chen JY, Wiley B, Li ZY, Campbell D, Saeki F, Cang H, et al. Gold nanocages: Engineering their structure for biomedical applications. Advanced Materials. 2005;17:2255-61.
[81] Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:13549-54.
[82] Akchurin G, Khlebtsov B, Akchurin G, Tuchin V, Zharov V, Khlebtsov N. Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena. Nanotechnology. 2008;19:-.
[83] Hu M, Petrova H, Chen JY, McLellan JM, Siekkinen AR, Marquez M, et al. Ultrafast laser studies of the photothermal properties of gold nanocages. Journal of Physical Chemistry B. 2006;110:1520-4.
[84] Aguirre CM, Moran CE, Young JF, Halas NJ. Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination. Journal of Physical Chemistry B. 2004;108:7040-5.
[85] Prasad V, Mikhailovsky A, Zasadzinski JA. Inside-out disruption of silica/gold core-shell nanoparticles by pulsed laser irradiation. Langmuir. 2005;21:7528-32.
[86] Harris N, Ford MJ, Cortie MB. Optimization of plasmonic heating by gold nanospheres and nanoshells. Journal of Physical Chemistry B. 2006;110:10701-7.
[87] Link S, Hathcock DJ, Nikoobakht B, El-Sayed MA. Medium effect on the electron cooling dynamics in gold nanorods and truncated tetrahedra. Advanced Materials. 2003;15:393-+.
[88] Velmre E. Thomas Johann Seebeck (1770-1831). Proceedings of the Estonian Academy of Sciences Engineering: Estonian Academy publishers; 2007. p. 276-82.
[89] Seebeck TJ. Magnetische polarisation der metalle und erze durch temperatur-differenz: W. Engelmann; 1895.
[90] Ørsted HC, Rahbek KL. Experimenta circa effectum conflictus electrici in acum magneticam: med oversættelse til dansk fra Hesperus bind III pag. 312-21, udgivet af Knud Lyhne Rahbek, 1820: Københavns Universitets Fond til Tilvejebringelse af Læremidler; 1970.
[91] Vedernikov MV, Iordanishvili EK. A.F. Ioffe and origin of modern semiconductor thermoelectric energy conversion. Xvii International Conference on Thermoelectrics, Proceedings Ict 98. 1998:37-42.
[92] Rowe DM. Thermoelectrics handbook: macro to nano: CRC press; 2005.
[93] Chen G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B. 1998;57:14958-73.
[94] Nikitin E. Study of temperature dependencies of electrical conductivity and thermal power of silicides. Zhurnal Tekhnicheskoj Fiziki–28. 1958;23.
[95] Fedorov M. Thermoelectric Silicides: Past, Present and Future. J Thermoelectr. 2009;2:51-60.
[96] Snyder GJ, Toberer ES. Complex thermoelectric materials. Nature materials. 2008;7:105-14.
[97] Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001;413:597-602.
[98] Toshima N, Yan H, Kajita M, Honda Y, Ohno N. Novel synthesis of polyaniline using iron(III) catalyst and ozone. Chem Lett. 2000:1428-9.
[99] Yan H, Sada N, Toshima N. Thermal transporting properties of electrically conductive polyaniline films as organic thermoelectric materials. Journal of Thermal Analysis and Calorimetry. 2002;69:881-7.
[100] Kaul PB, Day KA, Abramson AR. Application of the three omega method for the thermal conductivity measurement of polyaniline. Journal of applied physics. 2007;101:083507.
[101] Mateeva N, Niculescu H, Schlenoff J, Testardi L. Correlation of Seebeck coefficient and electric conductivity in polyaniline and polypyrrole. Journal of applied physics. 1998;83:3111-7.
[102] Pfeiffer M, Beyer A, Fritz T, Leo K. Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study. Applied physics letters. 1998;73:3202-4.
[103] Kemp N, Kaiser A, Liu CJ, Chapman B, Mercier O, Carr A, et al. Thermoelectric power and conductivity of different types of polypyrrole. Journal of Polymer Science Part B: Polymer Physics. 1999;37:953-60.
[104] Kirchmeyer S, Elschner A, Reuter K, Lovenich W, Merker U. PEDOT: principles and applications of an intrinsically conductive polymer. CRC, Boca Raton. 2011.
[105] Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T. Recent Progress on PEDOT-Based Thermoelectric Materials. Materials. 2015;8:732-50.
[106] Zhang B, Sun J, Katz H, Fang F, Opila R. Promising thermoelectric properties of commercial PEDOT: PSS materials and their Bi2Te3 powder composites. ACS applied materials & interfaces. 2010;2:3170-8.
[107] Yue RR, Xu JK. Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review. Synthetic Met. 2012;162:912-7.
[108] Chang K-C, Jeng M-S, Yang C-C, Chou Y-W, Wu S-K, Thomas MA, et al. The thermoelectric performance of poly (3, 4-ethylenedi oxythiophene)/poly (4-styrenesulfonate) thin films. Journal of electronic materials. 2009;38:1182-8.
[109] Liu C, Lu B, Yan J, Xu J, Yue R, Zhu Z, et al. Highly conducting free-standing poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films with improved thermoelectric performances. Synthetic Met. 2010;160:2481-5.
[110] Ferain I, Colinge CA, Colinge J-P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature. 2011;479:310-6.
[111] Braun F. On the current conduction through metal sulphides. Ann Phys Chem. 1874;153:556.
[112] Kano G. Avalanche Breakdown Voltages in Punch-through Si Epitaxial Planar Schottky Barrier Diodes. Jpn J Appl Phys. 1969;8:463-&.
[113] Di Bartolomeo A. Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. arXiv preprint arXiv:150507686. 2015.
[114] Luo LB, Zeng LH, Xie C, Yu YQ, Liang FX, Wu CY, et al. Light trapping and surface plasmon enhanced high-performance NIR photodetector. Scientific reports. 2014;4.
[115] DiLello NA. Fabrication and characterization of germanium-on-silicon photodiodes: Massachusetts Institute of Technology; 2012.
[116] Sood AK, Richwine RA, Puri YR, DiLello N, Hoyt JL, Akinwande TI, et al. Development of low dark current SiGe-detector arrays for visible-NIR Imaging Sensor. SPIE Defense, Security, and Sensing: International Society for Optics and Photonics; 2009. p. 72983D-D-11.
[117] Michel J, Liu J, Kimerling LC. High-performance Ge-on-Si photodetectors. Nature Photonics. 2010;4:527-34.
[118] Knight MW, Wang Y, Urban AS, Sobhani A, Zheng BY, Nordlander P, et al. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 2013;13:1687-92.
[119] Grabar KC, Freeman RG, Hommer MB, Natan MJ. Preparation and Characterization of Au Colloid Monolayers. Analytical Chemistry. 1995;67:735-43.
[120] Norrman S, Andersson T, Granqvist CG, Hunderi O. Optical-Properties of Discontinuous Gold-Films. Phys Rev B. 1978;18:674-95.
[121] Dobierzewskamozrzymas E, Bieganski P. Electrical and Optical-Properties of Discontinuous Al Films near the Percolation-Threshold. J Phys F Met Phys. 1988;18:2061-7.
[122] Simmons JH, Potter KS. Optical materials. San Diego: Academic Press; 2000.
[123] Palik ED. Handbook of optical constants of solids. Orlando: Academic Press; 1985.
[124] Afandiyeva IM, Demirezen S, Altindal S. Temperature dependence of forward and reverse bias current-voltage characteristics in Al-TiW-PtSi/n-Si Schottky barrier diodes with the amorphous diffusion barrier. J Alloy Compd. 2013;552:423-9.
[125] Lim W, Jeong JH, Lee JH, Hur SB, Ryu JK, Kim KS, et al. Temperature dependence of current-voltage characteristics of Ni-AlGaN/GaN Schottky diodes. Appl Phys Lett. 2010;97.
[126] Yuksel OF. Temperature dependence of current-voltage characteristics of Al/p-Si (100) Schottky barrier diodes. Physica B. 2009;404:1993-7.
[127] Pattabi M, Krishnan S, Ganesh, Mathew X. Effect of temperature and electron irradiation on the I-V characteristics of Au/CdTe Schottky diodes. Sol Energy. 2007;81:111-6.
[128] Kumar R, Chand S. The Effects Of Temperature On Electrical Transport Properties Of Al/Si Schottky Diode. Proceeding of International Conference on Recent Trends in Applied Physics & Material Science (Ram 2013). 2013;1536:487-8.
[129] Horvath ZJ, Adam M, Pinter I, Cvikl B, Korosak D, Mrdjen T, et al. Anomalous temperature dependence of series resistance in Ag/Si and Al/Si Schottky junctions. Vacuum. 1998;50:417-9.
[130] Weber MJ. Handbook of optical materials. Boca Raton, Fla.: CRC Press; 2003.
[131] Powell RW, Ho CY, Liley PE. Thermal conductivity of selected materials. Washington: U.S. Dept. of Commerce, National Bureau of Standards; for sale by the Superintendent of Documents, U.S. Govt. Print. Off.; 1963.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *