|
[1] Seib FP, Kaplan DL. Doxorubicin-loaded silk films: drug-silk interactions and in vivo performance in human orthotopic breast cancer. Biomaterials. 2012;33:8442-50. [2] Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR. Controlling silk fibroin particle features for drug delivery. Biomaterials. 2010;31:4583-91. [3] Tao H, Siebert SM, Brenckle MA, Averitt RD, Cronin-Golomb M, Kaplan DL, et al. Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices. Appl Phys Lett. 2010;97. [4] Hu X, Shmelev K, Sun L, Gil ES, Park SH, Cebe P, et al. Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing. Biomacromolecules. 2011;12:1686-96. [5] Chang H-H, Fang AW, Sysak MN, Park H, Jones R, Cohen O, et al. 1310nm silicon evanescent laser. Optics express. 2007;15:11466-71. [6] DeCusatis C, Kaminow IP. The optical communications reference. Amsterdam: Academic; 2010. [7] Tao H, Kaplan DL, Omenetto FG. Silk Materials - A Road to Sustainable High Technology. Advanced Materials. 2012;24:2824-37. [8] Tansil NC, Koh LD, Han MY. Functional Silk: Colored and Luminescent. Advanced Materials. 2012;24:1388-97. [9] Borkner CB, Elsner MB, Scheibel T. Coatings and Films Made of Silk Proteins. Acs Appl Mater Inter. 2014;6:15611-25. [10] Hu X, Cebe P, Weiss AS, Omenetto F, Kaplan DL. Protein-based composite materials. Mater Today. 2012;15:208-15. [11] You R, Zhang Y, Liu Y, Liu G, Li M. The degradation behavior of silk fibroin derived from different ionic liquid solvents. Natural Science. 2013;5:10. [12] Lawrence BD, Wharram S, Kluge JA, Leisk GG, Omenetto FG, Rosenblatt MI, et al. Effect of hydration on silk film material properties. Macromolecular bioscience. 2010;10:393-403. [13] Rockwood DN, Preda RC, Yucel T, Wang XQ, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6:1612-31. [14] Parker ST, Domachuk P, Amsden J, Bressner J, Lewis JA, Kaplan DL, et al. Biocompatible Silk Printed Optical Waveguides. Advanced Materials. 2009;21:2411-+. [15] Tao H, Brenckle MA, Yang MM, Zhang JD, Liu MK, Siebert SM, et al. Silk-Based Conformal, Adhesive, Edible Food Sensors. Advanced Materials. 2012;24:1067-72. [16] Kim S, Mitropoulos AN, Spitzberg JD, Tao H, Kaplan DL, Omenetto FG. Silk inverse opals. Nat Photonics. 2012;6:817-22. [17] Amsden JJ, Domachuk P, Gopinath A, White RD, Dal Negro L, Kaplan DL, et al. Rapid Nanoimprinting of Silk Fibroin Films for Biophotonic Applications. Adv Mater. 2010;22:1746-+. [18] da Silva RR, Dominguez CT, dos Santos MV, Barbosa-Silva R, Cavicchioli M, Christovan LM, et al. Silk fibroin biopolymer films as efficient hosts for DFB laser operation. J Mater Chem C. 2013;1:7181-90. [19] Jiang CY, Wang XY, Gunawidjaja R, Lin YH, Gupta MK, Kaplan DL, et al. Mechanical properties of robust ultrathin silk fibroin films. Advanced Functional Materials. 2007;17:2229-37. [20] Lin N, Hu F, Sun Y, Wu C, Xu H, Liu XY. Construction of White‐Light‐Emitting Silk Protein Hybrid Films by Molecular Recognized Assembly among Hierarchical Structures. Advanced functional materials. 2014;24:5284-90. [21] Cebe P, Hu X, Kaplan DL, Zhuravlev E, Wurm A, Arbeiter D, et al. Beating the heat--fast scanning melts silk beta sheet crystals. Scientific reports. 2013;3:1130. [22] Elakkiya T, Malarvizhi G, Rajiv S, Natarajan TS. Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery. Polymer International. 2014;63:100-5. [23] Zhang W, Wang X, Wang S, Zhao J, Xu L, Zhu C, et al. The use of injectable sonication-induced silk hydrogel for VEGF< sub> 165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials. 2011;32:9415-24. [24] Yucel T, Cebe P, Kaplan DL. Vortex-induced injectable silk fibroin hydrogels. Biophysical journal. 2009;97:2044-50. [25] Perrone GS, Leisk GG, Lo TJ, Moreau JE, Haas DS, Papenburg BJ, et al. The use of silk-based devices for fracture fixation. Nature communications. 2014;5. [26] Tao H, Hwang S-W, Marelli B, An B, Moreau JE, Yang M, et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proceedings of the National Academy of Sciences. 2014;111:17385-9. [27] Turkevich J, Stevenson PC, Hillier J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discussions of the Faraday Society. 1951:55-&. [28] Turkevich J, Hubbell HH. Low Angle X-Ray Diffraction of Colloidal Gold and Carbon Black1a. Journal of the American Chemical Society. 1951;73:1-7. [29] Green M, O'Brien P. A simple one phase preparation of organically capped gold nanocrystals. Chemical Communications. 2000:183-4. [30] Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. Journal of the Chemical Society-Chemical Communications. 1994:801-2. [31] Labhasetwar V, Leslie-Pelecky DL. Biomedical applications of nanotechnology. Hoboken, N.J.: Wiley-Interscience; 2007. [32] Oliveira MM, Ugarte D, Zanchet D, Zarbin AJ. Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of colloid and interface science. 2005;292:429-35. [33] Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3:135-40. [34] Xu H, Shi X, Lv Y, Mao Z. The preparation and antibacterial activity of polyester fabric loaded with silver nanoparticles. Textile research journal. 2013;83:321-6. [35] Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ. Infrared extinction properties of gold nanoshells. Applied Physics Letters. 1999;75:2897-9. [36] Shi WL, Sahoo Y, Swihart MT, Prasad PN. Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir. 2005;21:1610-7. [37] Sun YG, Xia YN. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Analytical Chemistry. 2002;74:5297-305. [38] Sun YG, Mayers BT, Xia YN. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Letters. 2002;2:481-5. [39] Ng JD, Lorber B, Witz J, TheobaldDietrich A, Kern D, Giege R. The crystallization of biological macromolecules from precipitates: Evidence for Ostwald ripening. Journal of Crystal Growth. 1996;168:50-62. [40] Boistelle R, Astier JP. Crystallization Mechanisms in Solution. Journal of Crystal Growth. 1988;90:14-30. [41] Walters G, Parkin IP. The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterisation and applications. Journal of Materials Chemistry. 2009;19:574-90. [42] Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - I. Theory. Anal Biochem. 1998;262:137-56. [43] Orendorff CJ, Sau TK, Murphy CJ. Shape-dependent plasmon-resonant gold nanoparticles. Small. 2006;2:636-9. [44] Jackson JB, Halas NJ. Silver nanoshells: Variations in morphologies and optical properties. J Phys Chem B. 2001;105:2743-6. [45] Selvakannan PR, Sastry M. Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chem Commun. 2005:1684-6. [46] Novak JP, Nickerson C, Franzen S, Feldheim DL. Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal Chem. 2001;73:5758-61. [47] Caruso RA, Antonietti M. Sol-gel nanocoating: An approach to the preparation of structured materials. Chem Mater. 2001;13:3272-82. [48] Kubo S, Diaz A, Tang Y, Mayer TS, Khoo IC, Mallouk TE. Tunability of the refractive index of gold nanoparticle dispersions. Nano Lett. 2007;7:3418-23. [49] Hao E, Li SY, Bailey RC, Zou SL, Schatz GC, Hupp JT. Optical properties of metal nanoshells. Journal of Physical Chemistry B. 2004;108:1224-9. [50] Schwartzberg AM, Oshiro TY, Zhang JZ, Huser T, Talley CE. Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles. Anal Chem. 2006;78:4732-6. [51] Shukla S, Priscilla A, Banerjee M, Bhonde RR, Ghatak J, Satyam PV, et al. Porous gold nanospheres by controlled transmetalation reaction: A novel material for application in cell imaging. Chem Mater. 2005;17:5000-5. [52] Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY, et al. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 2005;5:473-7. [53] Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B. 2003;107:668-77. [54] Prevo BG, Esakoff SA, Mikhailovsky A, Zasadzinski JA. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small. 2008;4:1183-95. [55] Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today. 2007;2:30-8. [56] Richardson HH, Carlson MT, Tandler PJ, Hernandez P, Govorov AO. Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions. Nano Lett. 2009;9:1139-46. [57] Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett. 2006;1:84-90. [58] Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton TA. Limits of localized heating by electromagnetically excited nanoparticles. J Appl Phys. 2006;100. [59] Wan DH, Chen HL, Tseng SC, Wang LA, Chen YP. One-Shot Deep-UV Pulsed-Laser-Induced Photomodification of Hollow Metal Nanoparticles for High-Density Data Storage on Flexible Substrates. Acs Nano. 2010;4:165-73. [60] Heber A, Selmke M, Cichos F. Metal Nanoparticle Based All-Optical Photothermal Light Modulator. Acs Nano. 2014;8:1893-8. [61] Baffou G, Polleux J, Rigneault H, Monneret S. Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination. J Phys Chem C. 2014;118:4890-8. [62] Fang ZY, Zhen YR, Neumann O, Polman A, de Abajo FJG, Nordlander P, et al. Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle. Nano Lett. 2013;13:1736-42. [63] Baffou G, Berto P, Urena EB, Quidant R, Monneret S, Polleux J, et al. Photoinduced Heating of Nanoparticle Arrays. Acs Nano. 2013;7:6478-88. [64] Russell AG, McKnight MD, Hestekin JA, Roper DK. Thermodynamics of Optoplasmonic Heating in Fluid-Filled Gold-Nanoparticle-Plated Capillaries. Langmuir : the ACS journal of surfaces and colloids. 2011;27:7799-805. [65] Dunklin JR, Forcherio GT, Berry KR, Roper DK. Gold Nanoparticle-Polydimethylsiloxane Thin Films Enhance Thermoplasmonic Dissipation by Internal Reflection. Journal of Physical Chemistry C. 2014;118:7523-31. [66] Forcherio GT, Roper DK. Optical attenuation of plasmonic nanocomposites within photonic devices. Appl Optics. 2013;52:6417-27. [67] Maity S, Bochinski JR, Clarke LI. Metal Nanoparticles Acting as Light-Activated Heating Elements within Composite Materials. Advanced Functional Materials. 2012;22:5259-70. [68] Yavuz MS, Cheng YY, Chen JY, Cobley CM, Zhang Q, Rycenga M, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater. 2009;8:935-9. [69] Kojic N, Pritchard EM, Tao H, Brenckle MA, Mondia JP, Panilaitis B, et al. Focal Infection Treatment using Laser-Mediated Heating of Injectable Silk Hydrogels with Gold Nanoparticles. Advanced Functional Materials. 2012;22:3793-8. [70] Zhang HJ, Xia HS, Zhao Y. Light-Controlled Complex Deformation and Motion of Shape-Memory Polymers Using a Temperature Gradient. Acs Macro Lett. 2014;3:940-3. [71] Zhang HJ, Zhao Y. Polymers with Dual Light-Triggered Functions of Shape Memory and Healing Using Gold Nanoparticles. Acs Appl Mater Inter. 2013;5:13069-75. [72] Ramesh GV, Porel S, Radhakrishnan TP. Polymer thin films embedded with in situ grown metal nanoparticles. Chemical Society reviews. 2009;38:2646-56. [73] Ghanipour M, Dorranian D. Effect of Ag-Nanoparticles Doped in Polyvinyl Alcohol on the Structural and Optical Properties of PVA Films. J Nanomater. 2013. [74] Cao ZX, Chen ZY, Escoubas L. Optical, structural, and electrical properties of PEDOT:PSS thin films doped with silver nanoprisms. Opt Mater Express. 2014;4:2525-34. [75] de Luzuriaga AR, Grande H, Pomposo JA. A Theoretical Investigation of Polymer-Nanoparticles as Miscibility Improvers in All-Polymer Nanocomposites. J Nano Res-Sw. 2008;2:105-14. [76] Dunklin JR, Forcherio GT, Berry Jr KR, Roper D. Gold nanoparticle–polydimethylsiloxane thin films enhance thermoplasmonic dissipation by internal reflection. The Journal of Physical Chemistry C. 2014;118:7523-31. [77] Hsieh KC, Tsai TY, Wan DH, Chen HL, Tai NH. Iridescence of Patterned Carbon Nanotube Forests on Flexible Substrates: From Darkest Materials to Colorful Films. Acs Nano. 2010;4:1327-36. [78] Yang ZP, Ci LJ, Bur JA, Lin SY, Ajayan PM. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008;8:446-51. [79] Weissleder R. A clearer vision for in vivo imaging. Nature Biotechnology. 2001;19:316-7. [80] Chen JY, Wiley B, Li ZY, Campbell D, Saeki F, Cang H, et al. Gold nanocages: Engineering their structure for biomedical applications. Advanced Materials. 2005;17:2255-61. [81] Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:13549-54. [82] Akchurin G, Khlebtsov B, Akchurin G, Tuchin V, Zharov V, Khlebtsov N. Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena. Nanotechnology. 2008;19:-. [83] Hu M, Petrova H, Chen JY, McLellan JM, Siekkinen AR, Marquez M, et al. Ultrafast laser studies of the photothermal properties of gold nanocages. Journal of Physical Chemistry B. 2006;110:1520-4. [84] Aguirre CM, Moran CE, Young JF, Halas NJ. Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination. Journal of Physical Chemistry B. 2004;108:7040-5. [85] Prasad V, Mikhailovsky A, Zasadzinski JA. Inside-out disruption of silica/gold core-shell nanoparticles by pulsed laser irradiation. Langmuir. 2005;21:7528-32. [86] Harris N, Ford MJ, Cortie MB. Optimization of plasmonic heating by gold nanospheres and nanoshells. Journal of Physical Chemistry B. 2006;110:10701-7. [87] Link S, Hathcock DJ, Nikoobakht B, El-Sayed MA. Medium effect on the electron cooling dynamics in gold nanorods and truncated tetrahedra. Advanced Materials. 2003;15:393-+. [88] Velmre E. Thomas Johann Seebeck (1770-1831). Proceedings of the Estonian Academy of Sciences Engineering: Estonian Academy publishers; 2007. p. 276-82. [89] Seebeck TJ. Magnetische polarisation der metalle und erze durch temperatur-differenz: W. Engelmann; 1895. [90] Ørsted HC, Rahbek KL. Experimenta circa effectum conflictus electrici in acum magneticam: med oversættelse til dansk fra Hesperus bind III pag. 312-21, udgivet af Knud Lyhne Rahbek, 1820: Københavns Universitets Fond til Tilvejebringelse af Læremidler; 1970. [91] Vedernikov MV, Iordanishvili EK. A.F. Ioffe and origin of modern semiconductor thermoelectric energy conversion. Xvii International Conference on Thermoelectrics, Proceedings Ict 98. 1998:37-42. [92] Rowe DM. Thermoelectrics handbook: macro to nano: CRC press; 2005. [93] Chen G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B. 1998;57:14958-73. [94] Nikitin E. Study of temperature dependencies of electrical conductivity and thermal power of silicides. Zhurnal Tekhnicheskoj Fiziki–28. 1958;23. [95] Fedorov M. Thermoelectric Silicides: Past, Present and Future. J Thermoelectr. 2009;2:51-60. [96] Snyder GJ, Toberer ES. Complex thermoelectric materials. Nature materials. 2008;7:105-14. [97] Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001;413:597-602. [98] Toshima N, Yan H, Kajita M, Honda Y, Ohno N. Novel synthesis of polyaniline using iron(III) catalyst and ozone. Chem Lett. 2000:1428-9. [99] Yan H, Sada N, Toshima N. Thermal transporting properties of electrically conductive polyaniline films as organic thermoelectric materials. Journal of Thermal Analysis and Calorimetry. 2002;69:881-7. [100] Kaul PB, Day KA, Abramson AR. Application of the three omega method for the thermal conductivity measurement of polyaniline. Journal of applied physics. 2007;101:083507. [101] Mateeva N, Niculescu H, Schlenoff J, Testardi L. Correlation of Seebeck coefficient and electric conductivity in polyaniline and polypyrrole. Journal of applied physics. 1998;83:3111-7. [102] Pfeiffer M, Beyer A, Fritz T, Leo K. Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study. Applied physics letters. 1998;73:3202-4. [103] Kemp N, Kaiser A, Liu CJ, Chapman B, Mercier O, Carr A, et al. Thermoelectric power and conductivity of different types of polypyrrole. Journal of Polymer Science Part B: Polymer Physics. 1999;37:953-60. [104] Kirchmeyer S, Elschner A, Reuter K, Lovenich W, Merker U. PEDOT: principles and applications of an intrinsically conductive polymer. CRC, Boca Raton. 2011. [105] Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T. Recent Progress on PEDOT-Based Thermoelectric Materials. Materials. 2015;8:732-50. [106] Zhang B, Sun J, Katz H, Fang F, Opila R. Promising thermoelectric properties of commercial PEDOT: PSS materials and their Bi2Te3 powder composites. ACS applied materials & interfaces. 2010;2:3170-8. [107] Yue RR, Xu JK. Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review. Synthetic Met. 2012;162:912-7. [108] Chang K-C, Jeng M-S, Yang C-C, Chou Y-W, Wu S-K, Thomas MA, et al. The thermoelectric performance of poly (3, 4-ethylenedi oxythiophene)/poly (4-styrenesulfonate) thin films. Journal of electronic materials. 2009;38:1182-8. [109] Liu C, Lu B, Yan J, Xu J, Yue R, Zhu Z, et al. Highly conducting free-standing poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films with improved thermoelectric performances. Synthetic Met. 2010;160:2481-5. [110] Ferain I, Colinge CA, Colinge J-P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature. 2011;479:310-6. [111] Braun F. On the current conduction through metal sulphides. Ann Phys Chem. 1874;153:556. [112] Kano G. Avalanche Breakdown Voltages in Punch-through Si Epitaxial Planar Schottky Barrier Diodes. Jpn J Appl Phys. 1969;8:463-&. [113] Di Bartolomeo A. Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. arXiv preprint arXiv:150507686. 2015. [114] Luo LB, Zeng LH, Xie C, Yu YQ, Liang FX, Wu CY, et al. Light trapping and surface plasmon enhanced high-performance NIR photodetector. Scientific reports. 2014;4. [115] DiLello NA. Fabrication and characterization of germanium-on-silicon photodiodes: Massachusetts Institute of Technology; 2012. [116] Sood AK, Richwine RA, Puri YR, DiLello N, Hoyt JL, Akinwande TI, et al. Development of low dark current SiGe-detector arrays for visible-NIR Imaging Sensor. SPIE Defense, Security, and Sensing: International Society for Optics and Photonics; 2009. p. 72983D-D-11. [117] Michel J, Liu J, Kimerling LC. High-performance Ge-on-Si photodetectors. Nature Photonics. 2010;4:527-34. [118] Knight MW, Wang Y, Urban AS, Sobhani A, Zheng BY, Nordlander P, et al. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 2013;13:1687-92. [119] Grabar KC, Freeman RG, Hommer MB, Natan MJ. Preparation and Characterization of Au Colloid Monolayers. Analytical Chemistry. 1995;67:735-43. [120] Norrman S, Andersson T, Granqvist CG, Hunderi O. Optical-Properties of Discontinuous Gold-Films. Phys Rev B. 1978;18:674-95. [121] Dobierzewskamozrzymas E, Bieganski P. Electrical and Optical-Properties of Discontinuous Al Films near the Percolation-Threshold. J Phys F Met Phys. 1988;18:2061-7. [122] Simmons JH, Potter KS. Optical materials. San Diego: Academic Press; 2000. [123] Palik ED. Handbook of optical constants of solids. Orlando: Academic Press; 1985. [124] Afandiyeva IM, Demirezen S, Altindal S. Temperature dependence of forward and reverse bias current-voltage characteristics in Al-TiW-PtSi/n-Si Schottky barrier diodes with the amorphous diffusion barrier. J Alloy Compd. 2013;552:423-9. [125] Lim W, Jeong JH, Lee JH, Hur SB, Ryu JK, Kim KS, et al. Temperature dependence of current-voltage characteristics of Ni-AlGaN/GaN Schottky diodes. Appl Phys Lett. 2010;97. [126] Yuksel OF. Temperature dependence of current-voltage characteristics of Al/p-Si (100) Schottky barrier diodes. Physica B. 2009;404:1993-7. [127] Pattabi M, Krishnan S, Ganesh, Mathew X. Effect of temperature and electron irradiation on the I-V characteristics of Au/CdTe Schottky diodes. Sol Energy. 2007;81:111-6. [128] Kumar R, Chand S. The Effects Of Temperature On Electrical Transport Properties Of Al/Si Schottky Diode. Proceeding of International Conference on Recent Trends in Applied Physics & Material Science (Ram 2013). 2013;1536:487-8. [129] Horvath ZJ, Adam M, Pinter I, Cvikl B, Korosak D, Mrdjen T, et al. Anomalous temperature dependence of series resistance in Ag/Si and Al/Si Schottky junctions. Vacuum. 1998;50:417-9. [130] Weber MJ. Handbook of optical materials. Boca Raton, Fla.: CRC Press; 2003. [131] Powell RW, Ho CY, Liley PE. Thermal conductivity of selected materials. Washington: U.S. Dept. of Commerce, National Bureau of Standards; for sale by the Superintendent of Documents, U.S. Govt. Print. Off.; 1963. |