帳號:guest(3.147.59.219)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳玉芬
作者(外文):Wu, Yu Fen
論文名稱(中文):開發結合治療與診斷功能的奈米基因藥物載體應用於肺癌主動標靶治療
論文名稱(外文):Folate conjugated Reducible PEI-Cdots/siRNA as Theranostic Nanoagent for Lung Cancer Treatment
指導教授(中文):王子威
指導教授(外文):Wang, Tzu Wei
口試委員(中文):李亦淇
黃俊仁
口試委員(外文):Lee, I Chi
Huang, Chun Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:101038501
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:75
中文關鍵詞:碳量子點生物可降解性基因治療主動標靶生物顯像
外文關鍵詞:carbon dotsreducible PEItheranosticgene therapybioimaging
相關次數:
  • 推薦推薦:0
  • 點閱點閱:261
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
整合型奈米基因藥物載體結合了治療與診斷兩大功能,可協助研究與醫療人員即時觀測追蹤藥物載體,同時觀察治療成效。在整合型奈米藥物研究中,多將現有之醫療診斷影像分子,例如:核磁共振顯影劑(MRI contrast agent)、生物螢光染劑(fluorescent dyes)、量子點(quantum dots)等,與具治療性的化學藥物、放射性分子或是核甘酸序列(nucleic acid sequence)結合,以達成治療與診斷結合之目的。本研究中,應用近年來廣受研究的碳量子點(carbon dots)於診斷病理現象,其可隨量子點大小調控的光致發螢光特性(photoluminescence)、環保的製作過程(environmental-friendly)、高度生物相容性(biocompatibility)以及抗光漂白作用(photobleaching resistance),使碳量子點較其他類型的診斷分子更適合應用於生物顯像領域中。
治療部分,基因靜默(gene silencing)為本研究在治療層面的主軸。利用轉殖小干擾RNA (small interfering RNA)與癌細胞中特定致癌化基因(ontogenetic gene)的專一性,抑制致癌化基因的表現,進而控制癌細胞增生與腫瘤生長。另外,為提高此整合型奈米基因藥物載體被癌細胞專一性胞吞(endocytosis)之比例,同時降低治療的副作用,我們在載體表面嵌合上癌症標靶性葉酸(folate)分子。利用肺癌細胞表面異常增生的葉酸受體(folate receptor)與載體表面的葉酸分子結合,可有效提升載體轉染肺癌細胞的機率。
本研究於碳量子點的表面包覆以雙硫鍵串聯之聚乙烯亞胺(polyethylenimine)分子,再於聚乙烯亞胺上接枝具標靶性的葉酸分子,透過靜電吸引方式與小干擾RNA結合後,形成結合治療與診斷的奈米藥物載體-fc-rPEI-Cdots。此奈米藥物載體會藉由葉酸引發之胞吞作用進入肺癌細胞中,再藉由雙硫鍵於核內體(endosome)的可被降解性以及聚乙烯亞胺的質子海綿效應,釋放出具療效的小干擾RNA,達到更好的治療效果並降低聚乙烯亞胺的細胞毒性。核磁共振光譜分析中證實成功合成多功能奈米基因藥物載體(fc-rPEI-Cdots)。此載體也具有光致發螢光特性,可接受360nm光照放出可見光(460nm)。同時載體透過靜電吸附具治療性核醣核酸,並在還原劑作用下裂解雙硫鍵放出治療性核醣核酸分子,達到治療效果。細胞實驗中證實此奈米基因藥物載體具有肺癌細胞標靶功能,同時也能透過釋放治療性的核醣核酸抑制基因表現,達到針對癌細胞毒殺的治療效果。
Theranostic nanoagent is defined as a carrier with combination of therapeutic and diagnostic application. In these agents, therapeutic strategies such as gene therapy, chemotherapy, photodynamic and radiation therapy are coupled with diagnostic segment, including MRI contract agents, fluorescent dyes, or quantum dots. While most contrast agents are radioactive or environmental-unfriendly, carbon dots have uniqueness to function as bioimaging molecules with low adverse effects for organism and the environment. Their good biocompatibility, special optical property, and excellent water solubility also make carbon dots as promising diagnostic bioimaging agents.
Gene silencing, the therapeutic strategy used in this study, knocks down cellular oncogenic signaling pathway. Specificity of siRNA to oncogenic mRNA regulates tumor growth with lowered affection to surrounding normal tissue. It is well known that enhanced expression of folate receptors (FR) appears on nearly all cancer cellular membranes, while FRs are nearly absent in normal tissue. Therefore, folate molecules are promising targeting motifs in cancer treatment.
Combining gene silencing strategy, bioimaging property of carbon dots, and targeting motif, our theranostic agents will benefit clinicians modifying therapeutic strategy in time by monitoring the development of carcinomatous tissues during treatment.
In this study, a novel theranostic nanoagent is developed and characterized. The reducible disulfide linkage between polyethylenimine (PEI) molecules in fc-rPEI-Cdots (folate conjugated-reducible PEI-carbon dots) is designed so as to be cleaved in cytoplasmic endosomal reductive environment; thus, enhancing gene delivery efficiency and decreasing cytotoxicity. From the results of 1H NMR, we have successfully conjugated PEI molecules and folate onto Cdots through disulfide linkage. The absorption spectrum of fc-rPEI-Cdots indicated the maximum excitation peak was shown under 360nm wavelength, while the highest intensity of the photoluminescence was observed at 460nm wavelength with blue emission light. The fabricated fc-rPEI-Cdots could form stable polyplex with nucleic acids in the weight ratio (fc-rPEI-Cdots/pooled siRNAs) higher than 15. A light band in agarose gel could be observed after treated with dithiothreitol (DTT) at 37℃, suggesting the redox property of fc-rPEI-Cdots. In vitro cell culture study demonstrated that fc-rPEI-Cdots is a highly biocompatible material and an excellent siRNA carrier for lung cancer treatment. Moreover, fc-rPEI-Cdots/pooled siRNAs can be selectively accumulated in lung cancer cells through receptor mediated endocytosis, resulting in better gene silencing effect in lung cancer cells.
Table of content
摘要 I
Abstract III
Table of content V
Table index VIII
Figure index IX
Chapter 1. Introduction 11
1.1 Theranostic nanoagents 11
1.1.1 Diagnostic compartments 11
1.1.2 Therapeutic segments 14
1.2 Carbon dots 18
1.3 Gene therapy for lung cancer treatment 19
1.4 Materials in this study 21
1.5 Motivation and purpose of study 23
Chapter 2. Literature Review 26
2.1 Carbon nanodots 26
2.1.1 Passivation 28
2.2. Degradable linkages in gene delivery 30
2.3 Folate targeting in cancer research47 32
2.4 Gene therapy in lung cancer treatment 33
Chapter 3. Theoretical Basis 37
3.1 Photoluminescence of carbon dots 37
3.2. RNA interference 37
3.3. Delivery of siRNA 38
3.3.1 siRNA protection 38
3.3.2 Receptor mediated endocytosis 39
3.3.3 Endosomal escape 39
3.3.4 Reduction of disulfide bond in cytosol 40
3.4 Tumor targeting 41
Chapter 4. Materials and Methods 43
4.1. Materials 43
4.2 Experimental Design 44
4.3 Synthesis of fc-rPEI-Cdots 44
4.3.1. Synthesis of PEI-Cdots 44
4.3.2. Synthesis of reducible PEI-Cdots 44
4.3.3. Folic acid conjugation 45
4.4. Physiochemical properties characterization 45
4.5. Optical property examination 45
4.6. Nucleic acid encapsulating ability and redox property 45
4.7. In vitro study 46
4.7.1. Biocompatibility and cellular uptake of fc-rPEI-Cdots. 46
4.7.2. Intracellular uptake of fc-rPEI-Cdots/siRNA 46
4.7.3. Gene silencing effect of fc-rPEI-Cdots/siRNA 47
Chapter 5. Results 49
5.1. Characterization of synthesized fc-rPEI-Cdots compounds. 49
5.2. Diagnostic potential of fc-rPEI-Cdots 54
5.3. Therapeutic siRNA loading 55
5.4. In vitro study 56
5.4.1 Biocompatibility of fc-rPEI-Cdots 56
5.4.2 Diagnostic and lung cancer-targeting effect of fc-rPEI-Cdots 57
5.4.3. Therapeutic effect of fc-rPEI-Cdots/pooled siRNA 59
Chapter 6. Discussion 62
Chapter 7. Conclusion 68
References 69


[1] Svenson, S. (2013) Theranostics: are we there yet?, Molecular pharmaceutics 10, 848-856.
[2] Sumer, B., and Gao, J. (2008) Theranostic nanomedicine for cancer, Nanomedicine 3, 137-140.
[3] Bardhan, R., Lal, S., Joshi, A., and Halas, N. J. (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer, Accounts of chemical research 44, 936-946.
[4] Muthu, M. S., Leong, D. T., Mei, L., and Feng, S. S. (2014) Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics, Theranostics 4, 660-677.
[5] Lee, G. Y., Qian, W. P., Wang, L., Wang, Y. A., Staley, C. A., Satpathy, M., Nie, S., Mao, H., and Yang, L. (2013) Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer, ACS nano 7, 2078-2089.
[6] Baum, R. P., and Kulkarni, H. R. (2012) Theranostics : From molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy - The bad berka experience, Theranostics 2, 437-447.
[7] Janib, S. M., Moses, A. S., and MacKay, J. A. (2010) Imaging and drug delivery using theranostic nanoparticles, Advanced drug delivery reviews 62, 1052-1063.
[8] Kiessling, F., Fokong, S., Koczera, P., Lederle, W., and Lammers, T. (2012) Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics, Journal of nuclear medicine : official publication, Society of Nuclear Medicine 53, 345-348.
[9] Singh, A., and Sahoo, S. K. (2014) Magnetic nanoparticles: a novel platform for cancer theranostics, Drug discovery today 19, 474-481.
[10] Richard, C., de Chermont Qle, M., and Scherman, D. (2008) Nanoparticles for imaging and tumor gene delivery, Tumori 94, 264-270.
[11] Kuo, P. H., Kanal, E., Abu-Alfa, A. K., and Cowper, S. E. (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis, Radiology 242, 647-649.
[12] Deo, A., Fogel, M., and Cowper, S. E. (2007) Nephrogenic systemic fibrosis: a population study examining the relationship of disease development to gadolinium exposure, Clinical journal of the American Society of Nephrology : CJASN 2, 264-267.
[13] Leide-Svegborn, S. (2010) Radiation exposure of patients and personnel from a PET/CT procedure with 18F-FDG, Radiation protection dosimetry 139, 208-213.
[14] Tomasi, G., and Rosso, L. (2012) PET imaging: implications for the future of therapy monitoring with PET/CT in oncology, Current opinion in pharmacology 12, 569-575.
[15] Smith-Bindman, R., Lipson, J., Marcus, R., Kim, K. P., Mahesh, M., Gould, R., Berrington de Gonzalez, A., and Miglioretti, D. L. (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer, Archives of internal medicine 169, 2078-2086.
[16] Tang, M. X., Mulvana, H., Gauthier, T., Lim, A. K., Cosgrove, D. O., Eckersley, R. J., and Stride, E. (2011) Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability, Interface focus 1, 520-539.
[17] Ihbe-Heffinger, A., Paessens, B., Berger, K., Shlaen, M., Bernard, R., von Schilling, C., and Peschel, C. (2013) The impact of chemotherapy-induced side effects on medical care usage and cost in German hospital care--an observational analysis on non-small-cell lung cancer patients, Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer 21, 1665-1675.
[18] Monsuez, J. J., Charniot, J. C., Vignat, N., and Artigou, J. Y. (2010) Cardiac side-effects of cancer chemotherapy, International journal of cardiology 144, 3-15.
[19] Rege, K., and Medintz, I. L. (2009) Methods in Bioengineering: Nanoscale Bioengineering and Nanomedicine, Artech House.
[20] Bao, L., Zhang, Z. L., Tian, Z. Q., Zhang, L., Liu, C., Lin, Y., Qi, B., and Pang, D. W. (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism, Advanced materials 23, 5801-5806.
[21] Yang, S. T., Wang, X., Wang, H., Lu, F., Luo, P. G., Cao, L., Meziani, M. J., Liu, J. H., Liu, Y., Chen, M., Huang, Y., and Sun, Y. P. (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents, The journal of physical chemistry. C, Nanomaterials and interfaces 113, 18110-18114.
[22] Yang, S. T., Cao, L., Luo, P. G., Lu, F., Wang, X., Wang, H., Meziani, M. J., Liu, Y., Qi, G., and Sun, Y. P. (2009) Carbon dots for optical imaging in vivo, Journal of the American Chemical Society 131, 11308-11309.
[23] Vachani, A., Moon, E., Wakeam, E., and Albelda, S. M. (2010) Gene therapy for mesothelioma and lung cancer, American journal of respiratory cell and molecular biology 42, 385-393.
[24] Swisher, S. G., Roth, J. A., Nemunaitis, J., Lawrence, D. D., Kemp, B. L., Carrasco, C. H., Connors, D. G., El-Naggar, A. K., Fossella, F., Glisson, B. S., Hong, W. K., Khuri, F. R., Kurie, J. M., Lee, J. J., Lee, J. S., Mack, M., Merritt, J. A., Nguyen, D. M., Nesbitt, J. C., Perez-Soler, R., Pisters, K. M., Putnam, J. B., Jr., Richli, W. R., Savin, M., Schrump, D. S., Shin, D. M., Shulkin, A., Walsh, G. L., Wait, J., Weill, D., and Waugh, M. K. (1999) Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer, Journal of the National Cancer Institute 91, 763-771.
[25] Schuler, M., Herrmann, R., De Greve, J. L. P., Stewart, A. K., Gatzemeier, U., Stewart, D. J., Laufman, L., Gralla, R., Kuball, J., Buhl, R., Heussel, C. P., Kommoss, F., Perruchoud, A. P., Shepherd, F. A., Fritz, M. A., Horowitz, J. A., Huber, C., and Rochlitz, C. (2001) Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lung cancer: Results of a multicenter phase II study, Journal of Clinical Oncology 19, 1750-1758.
[26] Kim, R., Emi, M., Tanabe, K., and Arihiro, K. (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression, Cancer Research 66, 5527-5536.
[27] Pai, S., Lin, Y., Macaes, B., Meneshian, A., Hung, C., and Wu, T. (2006) Prospects of RNA interference therapy for cancer, Gene therapy 13, 464-477.
[28] Creusat, G., Rinaldi, A. S., Weiss, E., Elbaghdadi, R., Remy, J. S., Mulherkar, R., and Zuber, G. (2010) Proton sponge trick for pH-sensitive disassembly of polyethylenimine-based siRNA delivery systems, Bioconjugate chemistry 21, 994-1002.
[29] Yue, Y., Jin, F., Deng, R., Cai, J., Dai, Z., Lin, M. C., Kung, H. F., Mattebjerg, M. A., Andresen, T. L., and Wu, C. (2011) Revisit complexation between DNA and polyethylenimine--effect of length of free polycationic chains on gene transfection, Journal of controlled release : official journal of the Controlled Release Society 152, 143-151.
[30] Parhamifar, L., Larsen, A. K., Hunter, A. C., Andresen, T. L., and Moghimi, S. M. (2010) Polycation cytotoxicity: a delicate matter for nucleic acid therapy—focus on polyethylenimine, Soft Matter 6, 4001-4009.
[31] Ross, J. F., Chaudhuri, P. K., and Ratnam, M. (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications, Cancer 73, 2432-2443.
[32] Leamon, C. P., and Low, P. S. (2001) Folate-mediated targeting: from diagnostics to drug and gene delivery, Drug discovery today 6, 44-51.
[33] Low, P. S., and Kularatne, S. A. (2009) Folate-targeted therapeutic and imaging agents for cancer, Current opinion in chemical biology 13, 256-262.
[34] Song, Y., Shi, W., Chen, W., Li, X., and Ma, H. (2012) Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells, Journal of Materials Chemistry 22, 12568-12573.
[35] Chen, Q., Wang, X., Chen, F., Zhang, Q., Dong, B., Yang, H., Liu, G., and Zhu, Y. (2011) Functionalization of upconverted luminescent NaYF4: Yb/Er nanocrystals by folic acid–chitosan conjugates for targeted lung cancer cell imaging, Journal of Materials Chemistry 21, 7661-7667.
[36] Baker, S. N., and Baker, G. A. (2010) Luminescent carbon nanodots: emergent nanolights, Angewandte Chemie 49, 6726-6744.
[37] Sun, Y. P., Zhou, B., Lin, Y., Wang, W., Fernando, K. A., Pathak, P., Meziani, M. J., Harruff, B. A., Wang, X., Wang, H., Luo, P. G., Yang, H., Kose, M. E., Chen, B., Veca, L. M., and Xie, S. Y. (2006) Quantum-sized carbon dots for bright and colorful photoluminescence, Journal of the American Chemical Society 128, 7756-7757.
[38] Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., Lian, S., Tsang, C. H., Yang, X., and Lee, S. T. (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design, Angewandte Chemie 49, 4430-4434.
[39] Zhai, X., Zhang, P., Liu, C., Bai, T., Li, W., Dai, L., and Liu, W. (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis, Chemical communications 48, 7955-7957.
[40] Wang, X., Qu, K., Xu, B., Ren, J., and Qu, X. (2011) Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents, Journal of Materials Chemistry 21, 2445-2450.
[41] Liu, C., Zhang, P., Zhai, X., Tian, F., Li, W., Yang, J., Liu, Y., Wang, H., Wang, W., and Liu, W. (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence, Biomaterials 33, 3604-3613.
[42] Kunath, K., von Harpe, A., Fischer, D., Petersen, H., Bickel, U., Voigt, K., and Kissel, T. (2003) Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine, Journal of controlled release : official journal of the Controlled Release Society 89, 113-125.
[43] Breunig, M., Lungwitz, U., Klar, J., Kurtz, A., Blunk, T., and Goepferich, A. (2004) Polyplexes of polyethylenimine and per-N-methylated polyethylenimine-cytotoxicity and transfection efficiency, Journal of nanoscience and nanotechnology 4, 512-520.
[44] KIM, Y.-K., LUU, Q.-P., ISLAM, M. A., CHOI, Y.-J., CHO, C.-S., JIANG, H.-L., and CHO, M.-H. (2012) Degradable polyethylenimine derivatives as gene carriers, Nano Life 2.
[45] Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., and Turner, N. D. (2004) Glutathione metabolism and its implications for health, The Journal of nutrition 134, 489-492.
[46] Xia, W., Wang, P., Lin, C., Li, Z., Gao, X., Wang, G., and Zhao, X. (2012) Bioreducible polyethylenimine-delivered siRNA targeting human telomerase reverse transcriptase inhibits HepG2 cell growth in vitro and in vivo, Journal of controlled release : official journal of the Controlled Release Society 157, 427-436.
[47] Zhang, Y., Zhang, Y. F., Bryant, J., Charles, A., Boado, R. J., and Pardridge, W. M. (2004) Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer, Clinical cancer research : an official journal of the American Association for Cancer Research 10, 3667-3677.
[48] Yang, Y., Hu, Y., Wang, Y., Li, J., Liu, F., and Huang, L. (2012) Nanoparticle delivery of pooled siRNA for effective treatment of non-small cell lung caner, Molecular pharmaceutics 9, 2280-2289.
[49] Crombez, L., Morris, M. C., Dufort, S., Aldrian-Herrada, G., Nguyen, Q., Mc Master, G., Coll, J. L., Heitz, F., and Divita, G. (2009) Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth, Nucleic acids research 37, 4559-4569.
[50] Li, S. D., Chen, Y. C., Hackett, M. J., and Huang, L. (2008) Tumor-targeted delivery of siRNA by self-assembled nanoparticles, Molecular therapy : the journal of the American Society of Gene Therapy 16, 163-169.
[51] Xu, J., Sahu, S., Cao, L., Bunker, C. E., Peng, G., Liu, Y., Fernando, K. A., Wang, P., Guliants, E. A., Meziani, M. J., Qian, H., and Sun, Y. P. (2012) Efficient fluorescence quenching in carbon dots by surface-doped metals--disruption of excited state redox processes and mechanistic implications, Langmuir : the ACS journal of surfaces and colloids 28, 16141-16147.
[52] Zhuo, S., Shao, M., and Lee, S. T. (2012) Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis, ACS nano 6, 1059-1064.
[53] Li, H., Kang, Z., Liu, Y., and Lee, S.-T. (2012) Carbon nanodots: synthesis, properties and applications, Journal of materials chemistry 22, 24230-24253.
[54] Hannon, G. J. (2002) RNA interference, Nature 418, 244-251.
[55] Whitehead, K. A., Langer, R., and Anderson, D. G. (2009) Knocking down barriers: advances in siRNA delivery, Nature reviews. Drug discovery 8, 129-138.
[56] Thomas, C. E., Ehrhardt, A., and Kay, M. A. (2003) Progress and problems with the use of viral vectors for gene therapy, Nature reviews. Genetics 4, 346-358.
[57] Zhang, S., Zhao, B., Jiang, H., Wang, B., and Ma, B. (2007) Cationic lipids and polymers mediated vectors for delivery of siRNA, Journal of controlled release : official journal of the Controlled Release Society 123, 1-10.
[58] Lu, Y., and Low, P. S. (2012) Folate-mediated delivery of macromolecular anticancer therapeutic agents, Advanced drug delivery reviews 64, 342-352.
[59] Xu, S., Olenyuk, B. Z., Okamoto, C. T., and Hamm-Alvarez, S. F. (2013) Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances, Advanced drug delivery reviews 65, 121-138.
[60] Pack, D. W., Hoffman, A. S., Pun, S., and Stayton, P. S. (2005) Design and development of polymers for gene delivery, Nature reviews. Drug discovery 4, 581-593.
[61] Phillips, D. J., Patterson, J. P., O'Reilly, R. K., and Gibson, M. I. (2014) Glutathione-triggered disassembly of isothermally responsive polymer nanoparticles obtained by nanoprecipitation of hydrophilic polymers, Polymer Chemistry 5, 126-131.
[62] Sitohy, B., Nagy, J. A., and Dvorak, H. F. (2012) Anti-VEGF/VEGFR therapy for cancer: reassessing the target, Cancer research 72, 1909-1914.
[63] Byrne, J. D., Betancourt, T., and Brannon-Peppas, L. (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics, Advanced drug delivery reviews 60, 1615-1626.
[64] Youn, P., Chen, Y., and Furgeson, D. Y. (2014) A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery, Molecular pharmaceutics 11, 486-495.
[65] Mather, B. D., Viswanathan, K., Miller, K. M., and Long, T. E. (2006) Michael addition reactions in macromolecular design for emerging technologies, Progress in Polymer Science 31, 487-531.
[66] Dong, Y., Wang, R., Li, H., Shao, J., Chi, Y., Lin, X., and Chen, G. (2012) Polyamine-functionalized carbon quantum dots for chemical sensing, Carbon 50, 2810-2815.
[67] Shi, Q.-Q., Li, Y.-H., Xu, Y., Wang, Y., Yin, X.-B., He, X.-W., and Zhang, Y.-K. (2014) High-yield and high-solubility nitrogen-doped carbon dots: formation, fluorescence mechanism and imaging application, RSC Advances 4, 1563-1566.
[68] Xu, Y., Wu, M., Liu, Y., Feng, X. Z., Yin, X. B., He, X. W., and Zhang, Y. K. (2013) Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications, Chemistry 19, 2276-2283.
[69] Verma, A., and Stellacci, F. (2010) Effect of surface properties on nanoparticle-cell interactions, Small 6, 12-21.
[70] Sabharanjak, S., and Mayor, S. (2004) Folate receptor endocytosis and trafficking, Advanced drug delivery reviews 56, 1099-1109.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *