帳號:guest(3.147.58.159)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭文杰
作者(外文):Peng, Wen Chieh
論文名稱(中文):無人搬運車多車派工系統模擬與分析
論文名稱(外文):Simulation Modeling and Analysis of Multiple Automated Guided Vehicle Dispatching System
指導教授(中文):陳建良
指導教授(外文):Chen, James C.
口試委員(中文):羅明琇
陳子立
口試委員(外文):Lo, Sonia M.
Chen, Tzu Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:101034565
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:71
中文關鍵詞:模擬分析自動化無人搬運車派工系統實驗設計
外文關鍵詞:Simulation modeling and analyzeautomated guided vehicledispatching ruledesign of experiment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:4187
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
自動化無人搬運車運載系統,存在多種運載路徑設計以及派工邏輯設計的問題,如何設計最適的自動化無人搬運車系統,藉以導入現場提高產能、減輕人員負擔,此為許多現場決策者推行自動化時所遭遇之瓶頸。本研究為一實際案例之應用延伸,在限定AGV數量與跨潔淨區的限制條件下,進行自動化無人搬運車系統之設計與分析。透過創造不同的路徑規劃與派工邏輯,為運載系統創造更大的彈性與績效表現。最後利用模擬軟體 “FlexSim”進行運載系統之構建,透過模擬協助分析系統。實驗設計為本研究中主要的分析方法,設定可控因子為:路徑設計模式、工作站生產速率、AGV車速以及派工邏輯;其中,共有三種路徑設計、三種派工邏輯可進行比較。設定關鍵績效指標為:系統單位時間產出、車輛平均等待時間、系統鎖死比率與在製品存貨水準等四項。透過實驗設計找出各因子與績效指標之關係,同時找出各績效指標之最適因子組合,用以協助現場人員進行決策,並可了解導入系統後之現場狀況。此一進程,可視為一套標準流程,希望藉由此種流程,來降低決策人員導入自動化無人搬運車系統之風險,並且針對不同的現場找到最佳的配置組合。
Automated Guide Vehicle system is a common automated transportation system in factory. There are two main issues need to consider when we want to import AGV system to factory, which is layout and dispatching rule design. We are interested how to design a most suitable AGV system for the site, in order to raise the output or decrease the loading for human resource. This study is a extend research from a real one case, and there are two restrictions, the fleet size of AGV was limited as four, and product transport needs to crossover cleanroom and normal area. We design and analyze AGV system under these two restrictions. Finally, we use the simulation software “FlexSim” to construct the simulation model; meanwhile the simulation model can help to do the analysis. Design of experiment (DOE) is a main method to analyze data in this research. There are four controllable factors layout design, machine production rate, speed of AGV and dispatching rule. Key performance indicators (KPIs) include output per shift, average stay time, machine block rate and WIP level. By using DOE, we can find out the relationship between factors and response variables, furthermore, the best combination of factors for each KPI can get in same time. After the analysis for the AGV system, it helps people who need to make the decision of build AGV system in factory. This kind of procedure can become a standard operation process for importing AGV system. We hope this procedure can decrease the risk for people when construct AGV system in factory, and people can get the optimal combination for different factories.
Chapter 1 Introduction 1
1.1. Background 1
1.2. Objective 3
1.3. Organization of Thesis 4
Chapter 2 Literature Review 6
2.1. Transportation System Choice 6
2.1.1. Why We Choose AGV 6
2.1.2. When We Use AGV 7
2.2. Review of AGV Design 7
2.3. Review the Dispatching Rule of AGV 10
Chapter 3 AGV Transportation System Building 13
3.1. Problem Definition 13
3.2. Assumption and Limitation 14
3.3. Layout Design and AGV 15
3.3.1. Layout Design A: Single-Loop Design 15
3.3.2. Layout Design B: Combine Single-Loop and Tandem Design ……………………………………………………………….16
3.3.3. Layout Design C: Combine Conventional and Tandem Design ……………………………………………………………….17
3.4. AGV Operations 17
3.4.1. AGV Operation for Layout Design A 17
3.4.2. AGV Operation for Layout Design B 19
3.4.3. AGV Operation for Layout Design C 21
3.4.4. Summary of Three Layout Design 23
3.5. Simulation Model 23
3.5.1. Components Used in Construct Flexsim Model 23
3.5.2. Layout Design Models Built on FlexSim 26
3.6. Data Collection 27
3.7. Verification and Validation 27
Chapter 4 Output Analyze 29
4.1 Experiment Design 29
4.2 Experimental Result and Analysis 31
4.2.1. The Main Effects 32
4.2.2. The Interaction 36
4.2.3. Tukey’s Comparisons 43
4.2.4. Response Surface Plot 50
4.3 Regression Analyze 53
4.4 Desirability Function and Optimal Combination of Control Factor 57
Chapter 5 Conclusion 60
Reference 62
Bartholdi III, J. J., & Platzman, L. K. (1989). Decentralized control of automated guided vehicles on a simple loop. IIE transactions, 21(1), pp. 76-81.
Bozer, Y. A., & Srinivasan, M. M. (1991). Tandem configurations for automated guided vehicle systems and the analysis of single vehicle loops. IIE transactions, 23(1), pp. 72-82.
De Koster, R., Le-Anh, T., & van der Meer, J. R. (2004). Testing and classifying vehicle dispatching rules in three real-world settings. Journal of Operations Management, 22(4), pp. 369-386.
Derringer, G., & Suich, R. (1980). Simultaneous Optimization of Several Response Variables. Journal of Quality Technology, 12(4), pp. 214-219.
Egbelu, P. J., & Tanchoco, J. (1984). Characterization of automatic guided vehicle dispatching rules. The International Journal of Production Research, 22(3), pp. 359-374.
Ganesharajah, T., Hall, N. G., & Sriskandarajah, C. (1998). Design and operational issues in AGV-served manufacturing systems. Annals of Operations Research, 76, pp. 109-154.
Global Industry Analysts, I. (2010). Material Handling Equipment: A Global Strategic Business Report. CA (Vocus): Global Industry Analysts, Inc.
Group, P. M. (2012). Global Automated Material Handling Industry. Research and Markets.
Hwang, H., & Kim, S. H. (1998). Development of dispatching rules for automated guided vehicle systems. Journal of Manufacturing Syatems, 17(2), pp. 137-143.
International Labour Organization, I. (2015). Global Wage Report 2014/15: Wages and income inequality. International Labour Organization.
Klein, C. M., & Kim, J. (1996). AGV dispatching. International Journal of Production Research, 34(1), pp. 95-110.
Le-Anh, T., & De Koster, M. (2006). A review of design and control of automated guided vehicle systems. European Journal of Operational Research, 171(1), pp. 1-23.
Maxwell, W. L., & Muckstadt, J. A. (1982). Design of automatic guided vehicle systems. IIE Transactions, 14(2), pp. 114-124.
Taghaboni-Dutta, F. (1997). A value-added approach for automated guided vehicle task assignment. Journal of Manufacturing Systems, 16(1), pp. 24-34.
Talbot, L. (2003). Design and performance analysis of multistation automated guided vehicle systems. In PhD Thesis. Universite Catholique de Louvain.
Tanchoco, J., & Sinriech, D. (1992). OSL—optimal single-loop guide paths for AGVS. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 30(3), pp. 665-681.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *