|
1. 林則孟,「系統模擬-理論與應用」,滄海書局,2001 2. 詹詩敏,”半導體封裝廠之機台配置問題”,國立清華大學工業工程與工程管 理學系,碩士論文,2011 3. 黃思孟,”半導體封裝廠之短期訂單與機台指派問題”,國立清華大學工業工 程與工程管理學系,碩士論文,2012 4. 方信瓔,”半導體封裝廠之短期訂單與機台指派問題”,國立清華大學工業工 程與工程管理學系,碩士論文,2013 5. 鄭書豪,”CONWIP 生產管制架構於 IC 封裝產業之應用”,國立清華大學工 業工程與工程管理學系,碩士論文,1998 6. Carson, J. S.. AutoStat Output Statistical Analysis for AutoMod Users. Proceedings of the 1996 Winter Simulation Conference, 492-499 (1996). 7. Chen, CH and LH Lee. Stochastic Simulation Optimization: An Optimal Computing Budget Allocation, 2010. 8. Chris, N. Potts and Y. Kovalyov Mikhail. Scheduling with batching: A review. European Journal of Operational Research 120 (2000) 228-249. 9. Dean, H. Kropp and L. Smunt Timothy. Optimal and Heuristic Models for Lot Splitting in a Flow Shop. Decision Sciences Volume 21, Issue 4, pages 691–709, December 1990. 10. Etiler, O, B. Toklu, M. Atak and J. Wilson. genetic algorithm for flow shop scheduling problems. Journal of the Operational Research Society (2004) 55, 830-835. 11. Eva, Vallada, Ruben and Ruiz. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. European Journal of Operational Research 211 (2011) 612–622. 112 12. Garey, MR and DS Johnson. Computers and intractability: a guide to the theory of NP-completeness. San Francisco: Freeman, 1979. 13. Guinet, A, MM Solomon, PK Kedia and A Dussauchoy. A computational study of heuristics for two-stage flexible flowshops. International journal of production research, 1996; 34(5):1399–1415. 14. Gupta, JND, AMA Hariri and CN Potts. Scheduling a two-stage hybrid flow shop with parallel machines at the first stage. Ann Oper Res, 1997; 69:171–91. 15. Henderson, SG and BL Nelson. Handbooks in Operations Research and Management Science: Simulation, Volume 13, 2006. 16. John J. Grefenstette. Optimization of Control Parameters for Genetic Algorithms. IEEE Trans on Syestems, Man, and Cybernetics. VOL. SMC-16, NO, 1, 1986 17. Kim, J. S., S. H. Kang and S. M. Lee. Transfer Batch Scheduling for a Two-stage Flow Shop with Identical Parallel Machines at Each Stage. Omega 25 (5): 547–555, 1997. 18. Loo Hay, Lee, Chen Chun-Hung, Chew Ek Peng, Li Juxin, Pujowidianto Nugroho Artadi and Zhang Si. A Review of Optimal Computing Budget Allocation Algorithms for Simulation Optimization Problem. International Journal of Operations Research , 2010. 19. Low Chinyao. Simulated annealing heuristic for flow shop scheduling problems with unrelated parallel machines. Computers and Operations Research archive Volume 32 Issue 8, 2005. 20. Linn, R and W Zhang. Hybrid flow shop scheduling: a survey. Computers & Industrial Engineering, 37(1–2):57–61, 1999. 21. Liu, CY, Chang, SC. Scheduling flexible flow shops with sequence-dependent setup effects. IEEE Trans Robotics Automation, 16:408–19, 2000. 22. M. Cheng, N.J. Mukherjee and S.C. Sarin. A review of lot streaming. 113 International Journal of Production Research, Vol. 51, Nos. 23–24, 7023–7046, 2013. 23. Ribas, I, R. Leisten and JM. Framiñan. Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 1439–1454, 2010. 24. Rubén, Ruiz, José Antonio and Vázquez-Rodríguez. The hybrid flow shop scheduling problem. European Journal of Operational Research 205 (2010) 1–18. 25. Salvador, MS.. A solution to a special class of flow shop scheduling problems. In: Elmaghraby SE, editor. Symposium on the theory of scheduling and its applications. Berlin: Springer, 1973. 83–91. 26. Santos, DL, JL. Hunsucker and DE. Deal. Global lower bounds for flow shops with multiple processors. Eur J Oper Res, 1995; 80(1):112–20. 27. Uetake, T, H. Tsubone and M. Ohba. A production scheduling system in a hybrid flow shop. Int J Prod Econ, 1995; 41(1–3):395–8. 28. Zhang, W., et al.. Multi-job Lot Streaming to Minimize the Mean Completion Time in m+1 Hybrid Flowshops. International Journal of Production Economics 96 (2): 189–200, 2005. 29. Zhang, Chen, Lee, Chew and Chen. Simulation Optimization Using the Particle Swarm Optimization with Optimal Computing Budget Allocation. Proceedings of the Winter Simulation Conference, 2011. |